浙教版七年级上学期数学5.4 一元一次方程的应用同步练习(2份,一份含答案)

文档属性

名称 浙教版七年级上学期数学5.4 一元一次方程的应用同步练习(2份,一份含答案)
格式 zip
文件大小 100.6KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2013-12-11 15:22:55

文档简介

参考答案
一、1.x-2 x+2 3x=24 8 6,8,10 2.3200 3.①4 2 ②5.76 ③9 4.40000 
5.40 6.10
二、7.D 8.A 9.A 10.B 11.D 12.B 13.B 14.C
三、15.甲、乙两个商店剩余彩电相等,50-x,100-x=88-(50-x),x=31,甲商店调走31台,乙商店调走19台.
16.方法一:1000-x,5x,8(1000-x)
5x+8(1000-x)=6950,350,350,650
方法二:6950-y,
=1000,1750,650,350
不可能.设售出学生票数z张,根据题意得5z+8(1000-z)=7000
解之得:z=不是正整数,不合题意.
四、17.设小朋友x人.可列方程为6x-17=5x+3
解之得x=20
18.设十位数为x,则百位数为x+1,个位数是3x-2,可列方程为:
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解之得x=3
三位数为437.
19.设甲、乙两地路程x千米,可列方程为(+20)×5=x
解之得:x=350
20.略5.4 一元一次方程的应用测试题(A卷)
一、填空题(每小题3分,共18分)
1.连续偶数之和为24,若中间一个数为x,则其他的两个数为__________和__________.可列方程:__________,解得x=__________,三个连续偶数是__________.
2.已知某彩电按标价的九折出售,仍可获利20%,已知该彩电进价为每台2400元,则标价为每台__________元.
3.一根长为12米的铁丝折成一个长方形
①当长是宽的两倍时,长为__________米,宽为__________米.
②当长比宽多3倍时,面积为__________平方米.
③当长方形恰为正方形时,面积为__________平方米.
4.某人在银行存有一笔钱,已知年利率为2.25%,三年到期后扣除20%的利息税后所得利息恰好能买台价值720元的影碟机,则该人在银行存了__________元钱.
5.有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的两倍,则应由乙桶向甲桶倒__________升水.
6.一根弹簧在弹性范围内,每悬挂砝码一千克就被拉长0.5厘米,若弹簧原长12厘米,那么悬挂__________千克砝码时弹簧长为17厘米.

二、选择题(每小题3分,共24分)
7.甲同学扫干净教室需12分钟,乙同学需9分钟,两人共同扫干净教室需时间为
A.21分钟     B.10.5分钟      C.3分钟     D.36/7分钟
8.甲乙两人从同一地点出发去某地,若甲先走2小时后,乙在后面追赶,经过3小时追上甲,下列说法正确的是
A.甲乙两人所走路程相同 B.乙走的路程比甲多
C.乙比甲多走2小时 D.以上答案均不对
9.某商店某日卖出两个不同的计算器,都卖了64元,但其中一个盈利60%,另一个亏本20%,在这次买卖中这商店
A.赚了8元 B.赔了9元 C.不赔不赚 D.赚了24元
10.为了响应国家“退耕还林”的号召,改变水土流失的现状,某农场在2001年进行“退耕还林”,退耕后,林场的面积是耕地面积的25%,林场和耕地共有160公顷,设退耕后林场的面积是x公顷可得方程
A.25%=160-x B.
C.25%x=160 D.(1+25%)x=160
11.一个五位数,前三位数为a,后两位数为b,如果把后两位数b放在三位数a前面组成一个新的五位数,则这个新五位数为
A.b+a B.100a+b C.100b+a D.11000b+111a
12.某工厂原计划每天生产a个零件,现每天多生产b个零件,则生产m个零件提前的天数为
A.- B. C. D.
13.有一种足球,由32块黑、白相间的牛皮缝制而成,黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32-x)块,列出方程正确的是
A.3x=32-x B.3x=5(32-x) C.5x=3(32-x) D.6x=5(32-x)
14.某人存入5000元参加三年期教育储蓄(免征利息税),本息共得5417元,那么这种储蓄的年利率为
A.2.22% B.2.58% C.2.78% D.2.38%

三、简答题(共58分)
15.(9分)甲商店有彩电100台,乙商店有彩电88台,现新开一个丙商店从甲、乙两商店共调走彩电50台,使甲乙两商店剩余彩电相等,问从这两个商店各调走了多少台?
解:本题用来建立方程的相等关系是__________.
设:从甲商店调走彩电x台,则从乙商店调走彩电__________台,填表如下
原有彩电 调出彩电 剩余彩电
甲商店
乙商店
列出方程__________解之得__________答:        .

16.(9分)某文艺团体为“希望工程”募捐组织了一次义演,售出票分为两种,成人票每张8元,学生票每张5元,共售出1000张票,得票款6950元,问:两种票各售出多少张?
解:本题建立方程的相等关系是:成人票数+学生票数=1000张①或成人票款+学生票款=6950元②
方法一:设售出学生票x张,则售出成人票________张,那么得学生票款__________元,成人票款__________元,根据相等关系②可得方程__________解之得x=__________,因此售出学生票__________张,成人票__________张.
方法二:设所得学生票款为y元,则成人票款为__________元,那么学生票数为__________张,成人票数__________张,根据相等关系①可得方程__________,解之得y=__________,售出成人票__________张,学生票__________张.
又问:如果票价不变,那么售出1000张票所得款可能是7000元吗?为什么?
17.(10分)给一群小朋友分发糖果,若每人6粒,则尚缺17粒,若每人5粒,则可剩下3粒,问:这群小朋友有多少人?共有糖果多少粒?


18.(10分)一个三位数,百位上的数比十位上的大1,个位上的数比十位上的3倍少2,若将三位数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.


19.(10分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.


20.(10分)请你回忆,用算术法和方程法解应用题的过程,你认为哪种方法较好?请举两例加以说明.


5.4一元一次方程的应用测试题(B卷)
一、填空题(每小题3分,共18分)
1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.
(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;
(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.
2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.
3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.
4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.
5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.
6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.

二、选择题(每小题3分,共24分)
7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是
A.20      B.33        C.45        D.54
8.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么
A.甲比乙更优惠 B.乙比甲更优惠
C.甲与乙同等优惠 D.哪家更优惠要看原价
9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为
A.(x+y)千米/小时 B.(x-y)千米/小时
C.(x+2y)千米/小时 D.(2x+y)千米/小时
10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是
A.a米 B.(a+60)米 C.60a米 D.60 米
11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为
A.1-( + )m B.5- m
C. m D.以上都不对
12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为
A.x-1=5(1.5x) B.3x+1=50(1.5x)
C.3x-1= (1.5x) D.180x+1=150(1.5x)
13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为
A.a元 B.1.08a元 C.0.972a元 D.0.96a元
14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为
全月应纳税金额 税率(%)
不超过500元 5
超过500元到2000元 10
超过2000元至5000元 15
…… ……
A.1900元 B.1200元 C.1600元 D.1050元

三、简答题(共58分)
15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.
(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.
(3)若围成一个长方形,宽为5 cm,则长为_____,面积为_____,此时长、宽之差为_____.
(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).
(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.
16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?

17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.


18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.