6.2平面直角坐标系(1)[上学期]

文档属性

名称 6.2平面直角坐标系(1)[上学期]
格式 rar
文件大小 89.7KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2006-12-21 08:46:00

图片预览

文档简介

《平面直角坐标系》教学设计
一、教学目标:
(一)【知识目标】
1、了解平面直角坐标系的产生过程;
2、认识平面直角坐标系及其相关概念;
3、探索象限内点的特征与坐标轴上点的特征。
(二)【技能目标】
1、会正确画出平面直角坐标系;
2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;
3、在给定的条件下,能够根据象限内点的特征与坐标轴上点的特征,结合特殊点,利用方程、不等式等已有的知识解决一些简单的数学问题;
4、初步培养学生把现实问题抽象成数学模型的能力。
(三)【情感目标】
1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;
2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。
3、让学生得到尝试、成功的情感体验,感受数学之美。
二、教学重点与难点:
1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点。
2、教学难点:探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用。
三、教学过程:
(一)创设问题情境
引例:我们的教室共有56个座位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来玩个“点将”游戏,你们是“将”,由我来点,点到的同学说出自己的座位号几排几列)。同时演示“点将”游戏,游戏规则:(1)老师报到学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。奖励:同学们的掌声。
再提问你如何来确定自己的座位?
先让学生自己思考,也可以进行小范围的讨论,学生可以归纳出:要确定一个学生的座位必须有两个数,一个是排数,一个是列数。
那么再问2排3列与3排2列是否是同一个座位?由此你认为表示座位与两个数的顺序有关吗?
结合课件演示,让学生进行讨论与思考,可以发现:一个“将”的座位应该由一对有序的数组构成的。
(二)构建数学模型
由上面的例子中我们可以发现,我们学生的座位是由一对有序的数组构成的,那么就我们已有的数学知识而言,我们能否将其也用数学知识来解决呢?
教师在这个时间可以先提问一个数是如何来确定它的位置的,学生马上可以想到有关数轴的知识。
再利用教室的座位安排情况,同时特别要注意排与列之间的位置关系,由此学生可以有如下的发现:
1、排与列之间是互相垂直的位置关系。
2、每个座位都可以是排与列的交点。
由此教师就可以总结如下:
学生的座位是由看成是两条互相垂直的数轴的交点确定的,但是我们是否可以再简单一些呢?对于在平面内的点,我们可以用同样的方法来表示它的位置。
教师板书:画出平面直角坐标系。(简介:1637年,笛卡儿发表了《几何学》,创立了直角坐标系) 然后教师结合图形介绍:坐标轴,原点,坐标平面,象限等相关概念。
(三)解决相关问题
问题1:写出图中P,B,C,D,E,F各点的坐标。(如图1)
以P点为例进行讲解,如图1-1。
从P点分别向x轴与y轴作垂线,垂足分别为M、N,点M、N在x轴与y轴上所的对应的数,就是点P的横坐标与纵坐标,由此得出的有序实数对就是点P的坐标P(3,2)。
以下就可以让学生自己处理,可以交流。
问题2:在同一平面直角坐标系中,描出下列各点:
A(-3,0)、B(-2,1)、C(0,-4)、D(2,1)、E(3,0)。
以A点为例进行讲解。结合课件---成功的“点”进行讲解。
可以先在X轴上找到-3,再在Y轴上找到0,(或先在Y轴上找到0,再在X轴上找到-3),描出这个点。
接着,让学生个别学习(允许相互讨论),教师巡视,个别指导,请学生自行操作得出答案。
得出结论:平面上的点与有序实数对一一对应。
激趣:老师让学生依次连结AB、BC、CD、DE,得到“V”字形,感受数学图形之美,又代表成功(victory)之意。
(四)应用探究特征
问题3:象限内的点有什么特征?坐标轴上的点有什么特征?结合课件--教室“点兵”演示。
教师利用教室内的座位特点,先在教室里建立一个适当的平面直角坐标系,然后作一个简单的点的坐标的小游戏,把教室当沙场,玩“点兵”游戏。教室“点兵”游戏规则:(1)把学生分成六组:第一象限组、第二象限组、第三象限组、第四象限组、横轴组、纵轴组;(2)有老师点出每一组的代表;(3)有这组代表讨论出本组点的特点;(4)最后每组代表陈述;(5)处在原点处的学生可同时参与横轴组与纵轴组的讨论。奖励:来自本组的掌声。动作要求:每组全体同学起立动作整齐,协调统一。
先说出几个坐标,让与坐标相对应的学生起立,也可以点名学生说出自己的坐标。看看学生对点的坐标的熟悉与掌握程度。
再让分别处在第一、二、三、四象限的学生起立,让他们自己发现他们所在的象限的点的坐标的特征。
然后让处在坐标轴上的学生起立,也是让他们自己发现他们所在坐标轴上的点的特征。
要求每组学生在游戏中,允许相互讨论,由于强调每组的整体,教师也应该能较好控制学生的情绪与班级的相关秩序。
概括出相关特征后,教师在黑板上板书。
结论:
1、象限内点的特点:
点在第一象限;
点在第二象限;
点在第三象限;
点在第四象限;
2、x轴上的点纵坐标为0,y轴上的点横坐标为0;反之亦然。
3、强调:坐标轴上的点不在任何象限内,原点既在横轴上又在纵轴上。
再做几个相关的练习以巩固所学知识。
练习1:
(1)点A(2,-3)在第 象限。
(2)点C(a-1,-b+3)在X轴上,则b= 。
若点D(-3a-1,-2b+3)在Y轴上,则a= 。
(3)点P(4a-8,1-2 a)是第三象限的点,且a是整数,a= 。
(六)归纳小结提高
今天我们从现实生活中得出来了平面直角坐标系的有关知识,学会了用点写出坐标和用坐标表示点的方法;同时也探究了象限中点的坐标、坐标轴上的点的特征,使我们对平面直角坐标系有了初步的认识和了解。