课件10张PPT。解直角三角形(3)复习:精确度:
边长保留四个有效数字,角度精确到1′. 两种情况:
解直角三角形,只有下面两种情况:
(1)已知两条边;
(2)已知一条边和一个锐角 1. 解直角三角形.
在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.
如图, 在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.读一读例1 如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)你会解吗?例1 如图19.4.4,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)在Rt△BDE中,
∵ BE=DE×tan a
=AC×tan a
∴AB=BE+AE = AC×tan a +CD =9.17+1.20≈10.4(米)
答: 电线杆的高度约为10.4米. 如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角 a=16゜31′,求飞机A到控制点B的距离.(精确到1米) 如图所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1米.算出旗杆的实际高度.(精确到1米)例2、学校操场上有一根旗杆,上面有一根开旗用的绳子(绳子足够长),王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。(1)若王同学将旗杆上绳子拉成仰角为600,如图用卷尺量得BC=4米,则旗杆AB的高多少?(2)若王同学分别在点C、点D处将旗杆上绳子分别拉成仰角为600、300,如图量出CD=8米,你能求出旗杆AB的长吗?(3)此时他的数学老师来了一看,建议王同学只准用卷尺去量,你能给王同学设计方案完成任务吗?例3。某海防哨所O发现在它的北偏西30 ° ,距离哨所500M的A处有一艘船向正东方向航行,经过3分时间后到达哨所东北方向的B处。问船从A处到B处的航速是每时多少KM(精确到1KM/h)例4.为知道甲,乙两楼间的距离,测得两楼之间的距离为32.6m,从甲楼顶点A观测到乙楼顶D的俯角为35 ° 12 ′,观测到乙楼底C的俯角为43 ° 24 ′.求这两楼的高度(精确到0.1m)纸上谈兵设计方案测量下面两幢楼的高度。写出需要的数据并画出示意图、给出计算方案。