中小学教育资源及组卷应用平台
【期末优化训练】浙教版2022-2023学年九上数学
第2章 简单事件的概率 测试卷2(解析版)
一、选择题(本大题有10小题,每小题4分,共40分)
下面每小题给出的四个选项中,只有一个是正确的.
1.下列事件中是必然事件的是( )
A.抛掷一枚质地均匀的硬币,正面朝上
B.随意翻到一本书的某页,这一页的页码是偶数
C.打开电视机,正在播放广告
D.从两个班级中任选三名学生,至少有两名学生来自同一个班级
【答案】D
【解析】A、掷一枚质地均匀的硬币,正面向上是随机事件;
B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;
C、打开电视机,正在播放广告,是随机事件;
D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件.
故答案为:D.
2.下列事件中,属于不可能事件的是( )
A.购买1张体育彩票中奖
B.从地面发射1枚导弹,未击中空中目标
C.汽车累积行驶10000km,从未出现故障
D.从一个只装有白球和红球的袋中摸球,摸出黄球
【答案】D
【解析】A.购买1张体育彩票中奖,这是随机事件,故不符合题意;
B.从地面发射1枚导弹,未击中空中目标,这是随机事件,故不符合题意;
C.汽车累积行驶,从未出现故障,这是随机事件,故不符合题意;
D.从一个只装有白球和红球的袋中摸球,摸出黄球,这是不可能事件,故符合题意;
故答案为:D.
3.走入考场之前老师送你一句话“Wish you success”.在这句话中任选一个字母,这个字母为“s”的概率是( )
A. B. C. D.
【答案】C
【解析】在英语句子“Wish you success!”中共14个字母,
其中有字母“s”4个;
故其概率为.
故答案为:C
4.下列说法正确的是( )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.从两个班级中任选三名学生,至少有两名学生来自同一个班级
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上
【答案】B
【解析】A.明天下雨的概率为80%,只是说明明天下雨的可能性大,与时间无关,故本选项不符合题意;
B.从两个班级中任选三名学生,来自同一个班级的可能是2个,也可能是3个,即至少有两名学生来自同一个班级,故本选项符合题意;
C.某彩票中奖概率是1%,买100张这种彩票中奖是随机事件,不一定会有1张中奖,故本选项不符合题意;
D.小明前几次的数学测试成绩都在90分以上这次数学测试成绩不一定在90分以上,故本选项不符合题意.
故答案为:B.
5.将分别标有“文”“明”“宁“安”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“宁安”的概率是( )
A. B. C. D.
【答案】B
【解析】画树状图如下:
共有12种等可能的结果,两次摸出的球上的汉字组成“宁安”的结果有2种,
∴两次摸出的球上的汉字组成“宁安”的概率为,
故答案为:B.
6.“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是( )
A.① B.② C.③ D.④
【答案】A
【解析】A选项,水中捞月,一定不会发生,是不可能事件,符合题意;
B选项,守株待兔,可能会发生,是随机事件,不符合题意;
C选项,百步传杨,可能会发生,是随机事件,不符合题意;
D选项,瓮中捉鳖,一定会发生,是必然事件,不符合题意.
故答案为:A.
7.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是( )
A.3个球都是黑球 B.3个球都是白球
C.3个球中有白球 D.3个球中有黑球
【答案】D
【解析】A、摸出的3个球都是黑球,是随机事件,故不符合题意;
B、摸出的3个球都是白球,是不可能事件,故不符合题意;
C、摸出的3个球中有白球,是随机事件,故不符合题意.
D、因为有4个黑球,所以摸出的3个球中有黑球,是必然事件,故符合题意.
故答案为:D.
【分析】随机事件是在一定条件下,可能发生也可能不发生的事件;必然事件是在一定条件下,一定发生的事件;不可能事件是在一定条件下,一定不发生的事件,据此判断即可.
8.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.
A.8 B.9 C.14 D.15
【答案】C
【解析】∵摸到白球的频率约为30%,
∴不透明的袋子中一共有球为:6÷30%=20(个),
黑球有20-6=14(个),
故答案为:C.
9.某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( )
A. B. C. D.
【答案】B
【解析】由于显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,
所以显示屏上每隔5分钟就有一分钟的显示时间,
某人到达该车站时正好显示火车班次信息的概率是 .
故答案为:B.
10.同时掷两枚骰子,点数和为4的概率是( )
A. B. C. D.
【答案】A
【解析】由题意可列表得:
1 2 3 4 5 6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
由表可知一共有36种情况,点数和为4的有3种情况.
所以点数和为4的概率为.
故答案为:A.
二、填空题(本大题有6小题,每小题5分,共30分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是 .
【答案】
【解析】∵1,2,3,4,5中的奇数有3个:1、3、5,
∴取出的小球标号是奇数的概率是:3÷.
故答案为:.
12.在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是 .
【答案】
【解析】∵不透明袋子中装有5个球,其中有2个红球、3个白球,
∴从袋子中随机取出1个球,则它是红球的概率是,
故答案为:.
13.某鱼塘里养了条鲤鱼、若干条草鱼和条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为 .
【答案】
【解析】∵捕捞到草鱼的频率稳定在0.5左右,
设草鱼的条数为x,可得:
;
解得:x=2400,
经检验:x=2400是原方程的解且符合实际意义
∴由题意可得,捞到鲤鱼的概率为
,
故答案为:.
【分析】设草鱼的条数为x,根据题意列出方程,再求出x的值,最后利用概率公式求解即可。
14.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数为奇数的概率是 .
【答案】
【解析】任意抛掷一次骰子,朝上的面的点数有6种等可能结果,其中奇数有1,3,5共3种结果,
∴朝上的面的点数为奇数的概率是
,
故答案为:
.
15.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共24个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为 ,该盒子中装有黄色乒乓球的个数是 .
【答案】9
【解析】设盒子中黄色乒乓球的个数为x个,
根据题意,得 ,
解得x=9,
∴该盒子中装有黄色乒乓球的个数是9,
故答案为:9.
16.在一个不透明的袋子里装有白球和黄球共12个,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中黄球约有 个.
【答案】9
【解析】设袋中黄球有x个,根据题意得:
,
解得:x=9,
故袋中黄球有9个.
故答案为:9.
三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)
解答应写出文字说明,证明过程或推演步骤.
17.一个不透明的口袋里有10个除颜色外形状大小都相同的球,其中有4个红球,6个黄球.
(1)若从中随意摸出一个球,求摸出红球的概率;
(2)若从中随意摸出一个球是红球的概率为,求袋子中需再加入几个红球?
【答案】(1)解:摸出红球的概率为;
(2)解:设需再加入x个红球,
根据题意,得.
解得x=8.
故袋子中需再加入8个红球.
18.一个不透明的口袋里装有分别标有汉字“喜”、“迎”、“峰”、“会”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求球上的汉字刚好是“峰”的概率;
(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“喜迎”或“峰会”的概率.
【答案】(1)解:∵有汉字“喜”、“迎”、“峰”、“会”的四个小球,任取一球,共有4种不同结果,∴球上汉字是“峰”的概率为
(2)解:画树状图如下:
所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“喜迎”或“峰会”的情况有4种,
取出的两个球上的汉字恰能组成“喜迎”或“峰会”的概率:
19.我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种,目前年满三周岁的儿童已开始接种,某地有第一、第二、第三人民医院三家定点医院可进行接种.
(1)家长为小山随机选择一家医院接种疫苗,恰好选中第一人民医院的概率为 ;
(2)家长为小文和小宏随机选择同一家医院接种疫苗,请用列表法或画树状图法求他们选中同一家医院的概率.
【答案】(1)
(2)解:分别用A、B、C表示第一、第二、第三人民医院三家定点医院,
根据题意,列出表格,如下:
A B C
A A、A B、A C、A
B A、B B、B C、B
C A、C B、C C、C
一共有9种等可能结果,其中他们选择同一家医院接种疫苗的有3种情况,
∴他们选择同一家医院接种疫苗的概率为.
【解析】(1)根据题意得:恰好选中第一人民医院的概率为;
故答案为:
20.为了传承优秀传统文化,我校开展“经典诵读”比赛互动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母 A,B,C依次表示这三个诵读材料),将 A,B,C这三个字母分别写在 3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.
求:
(1)小明诵读《论语》的概率.
(2)小明和小亮诵读两个不同材料的概率.
【答案】解:小华诵读《弟子规》的概率= ( )小明和小亮诵读两个不同材料的概率. 解:列表得:
小华 小敏 A B C
A (A,A) (A,B) (A,C)
B (B,A) (B,B) (B,C)
C (C,A) (C,B) (C,C)
由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种, 所以P(小华和小敏诵读两个不同材料)=
(1)解:小华诵读《弟子规》的概率=
(2)解:列表得:
小华 小敏 A B C
A (A,A) (A,B) (A,C)
B (B,A) (B,B) (B,C)
C (C,A) (C,B) (C,C)
由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,
所以P(小华和小敏诵读两个不同材料)=
21.为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记 、 ,1名男生,记为 ;在八年级选出3名同学,其中1名女生,记为 ,2名男生,分别记为 、 .现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;
(2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.
【答案】(1)解:画树状图如下:
∴所有可能出现的代表队一共有9种;
(2)由树状图可知:
一共有有9种等可能的结果,其中选出的代表队中的两名同学恰好是一名男生和一名女生的情况有5种,
∴P= ,
∴选出的代表队中的两名同学恰好是一名男生和一名女生的概率为 .
22.将背面完全相同,正面上分别写有数字1,2,3,4的四张大小一样的卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数;将形状、大小完全相同,分别标有数字2,3,4的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.
(1)请你用画树状图或列表的方法,求这两个数差为0的概率;
(2)小明与小华做游戏,规则是:若这两个数的差为正数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
【答案】(1)解:画树状图如下:
或列表如下:
减数数差 被减数 1 2 3 4
2 -1 0 1 2
3 -2 -1 0 1
4 -3 -2 -1 0
由树状图(或列表)知所有可能出现的结果有12种,其中差为0的有3种,所以这两个数的差为0的概率为:;
(2)解:不公平,理由如下:
由(1)知,所有可能出现的结果有12种,这两个数的差为正数的有3种,其概率为:;这两个数的差为非正数的概率为:,
因为所以该游戏不公平,
游戏规则修改为:
若这两个数的差为负数,则小明赢;否则,小华赢.
23.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.
(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;
(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?
【答案】(1)解:树状图如图所示:
(2)解:∵m,n都是方程x2﹣5x+6=0的解,
∴m=2,n=3,或m=3,n=2,
由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有2个,
m,n都不是方程x2﹣5x+6=0的解的结果有2个,
小明获胜的概率为 ,小利获胜的概率为 ,
∴小明、小利获胜的概率一样大.
24.下表是某口罩生产厂对一批N95口罩质量检测的情况:
抽取口罩数 200 500 1000 1500 2000 3000
合格品数 188 471 946 1426 1898 2850
合格品频率 (精确到0.001) 0.940 0.942 0.946 0.951 a b
(1)a= ,b= ;
(2)从这批口罩中任意抽取一个是合格品的概率估计值是多少?(精确到0.01)
(3)若要生产380000个合格的N95口罩,该厂估计要生产多少个N95口罩?
【答案】(1)0.949;0.950
(2)解:由表格可知,随着抽取的口罩数量不断增大,任意抽取一个是合格的频率在0.95附近波动,
所以任意抽取的一个是合格品的概率估计值是0.95;
(3)解:(个).
答:该厂估计要生产400000个N95口罩.
【解析】(1)1898÷2000=0.949,2850÷3000=0.950;
故答案为:0.949,0.950;
21世纪教育网(www.21cnjy.com) 1 / 1中小学教育资源及组卷应用平台
【期末优化训练】浙教版2022-2023学年九上数学
第2章简单事件的概率 测试卷2
考试时间:120分钟 满分:150分
一、选择题(本大题有10小题,每小题4分,共40分)
下面每小题给出的四个选项中,只有一个是正确的.
1.下列事件中是必然事件的是( )
A.抛掷一枚质地均匀的硬币,正面朝上
B.随意翻到一本书的某页,这一页的页码是偶数
C.打开电视机,正在播放广告
D.从两个班级中任选三名学生,至少有两名学生来自同一个班级
2.下列事件中,属于不可能事件的是( )
A.购买1张体育彩票中奖
B.从地面发射1枚导弹,未击中空中目标
C.汽车累积行驶10000km,从未出现故障
D.从一个只装有白球和红球的袋中摸球,摸出黄球
3.走入考场之前老师送你一句话“Wish you success”.在这句话中任选一个字母,这个字母为“s”的概率是( )
A. B. C. D.
4.下列说法正确的是( )
A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨
B.从两个班级中任选三名学生,至少有两名学生来自同一个班级
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖
D.小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上
5.将分别标有“文”“明”“宁“安”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“宁安”的概率是( )
A. B. C. D.
6.“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是( )
A.① B.② C.③ D.④
7.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是( )
A.3个球都是黑球 B.3个球都是白球
C.3个球中有白球 D.3个球中有黑球
8.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.
A.8 B.9 C.14 D.15
9.某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( )
A. B. C. D.
10.同时掷两枚骰子,点数和为4的概率是( )
A. B. C. D.
二、填空题(本大题有6小题,每小题5分,共30分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是 .
12.在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是 .
13.某鱼塘里养了条鲤鱼、若干条草鱼和条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为 .
14.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数为奇数的概率是 .
15.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共24个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为 ,该盒子中装有黄色乒乓球的个数是 .
16.在一个不透明的袋子里装有白球和黄球共12个,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中黄球约有 个.
三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)
解答应写出文字说明,证明过程或推演步骤.
17.一个不透明的口袋里有10个除颜色外形状大小都相同的球,其中有4个红球,6个黄球.
(1)若从中随意摸出一个球,求摸出红球的概率;
(2)若从中随意摸出一个球是红球的概率为,求袋子中需再加入几个红球?
18.一个不透明的口袋里装有分别标有汉字“喜”、“迎”、“峰”、“会”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求球上的汉字刚好是“峰”的概率;
(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“喜迎”或“峰会”的概率.
19.我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种,目前年满三周岁的儿童已开始接种,某地有第一、第二、第三人民医院三家定点医院可进行接种.
(1)家长为小山随机选择一家医院接种疫苗,恰好选中第一人民医院的概率为 ;
(2)家长为小文和小宏随机选择同一家医院接种疫苗,请用列表法或画树状图法求他们选中同一家医院的概率.
20.为了传承优秀传统文化,我校开展“经典诵读”比赛互动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母 A,B,C依次表示这三个诵读材料),将 A,B,C这三个字母分别写在 3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.
求:
(1)小明诵读《论语》的概率.
(2)小明和小亮诵读两个不同材料的概率.
21.为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记 、 ,1名男生,记为 ;在八年级选出3名同学,其中1名女生,记为 ,2名男生,分别记为 、 .现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;
(2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.
22.将背面完全相同,正面上分别写有数字1,2,3,4的四张大小一样的卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数;将形状、大小完全相同,分别标有数字2,3,4的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.
(1)请你用画树状图或列表的方法,求这两个数差为0的概率;
(2)小明与小华做游戏,规则是:若这两个数的差为正数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
23.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标
有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.
(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;
(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?
24.下表是某口罩生产厂对一批N95口罩质量检测的情况:
抽取口罩数 200 500 1000 1500 2000 3000
合格品数 188 471 946 1426 1898 2850
合格品频率 (精确到0.001) 0.940 0.942 0.946 0.951 a b
(1)a= ,b= ;
(2)从这批口罩中任意抽取一个是合格品的概率估计值是多少?(精确到0.01)
(3)若要生产380000个合格的N95口罩,该厂估计要生产多少个N95口罩?
21世纪教育网(www.21cnjy.com) 1 / 1