本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
一元二次方程的解法
学习目标:
1、会用直接开平方法解形如=a(a≥0)或(mx+n)=a(a≥0)的方程;会用因式分解法(提公因式法、公式法)解某些一元二次方程;
2、理解一元二次方程解法的基本思想,能根据具体问题的实际意义检验结果的合理性。
重点:掌握直接开平方和因式分解法解一元二次方程的步骤。
难点:理解并应用直接开平方法和因式分解法解特殊的一元二次方程。
自主探索 合作交流
(1) 方程x2=4能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式?
(2) 方程x2-1=0能否用直接开平方法来解?要用直接开平方法解,首先应将它化成什么形式?
课堂练习 反馈调控
1.试用两种方法解方程x2-900=0.
(1)直接开平方法 (2) 因式分解法
2.解下列方程:
(1)x2-2=0; (2)16x2-25=0.
解(1)移项,得x2=2. (2) 移项,得_________.
直接开平方,得. 方程两边都除以16,得______
所以原方程的解是 直接开平方,得x=___.
,. 所以原方程的解是 x1=___,x2=___.
3.解下列方程:
(1)3x2+2x=0; (2)x2=3x.
解(1)方程左边分解因式,得_______________
所以 __________,或____________
原方程的解是 x1=______,x2=______
(2)原方程即_____________=0.
方程左边分解因式,得____________=0.
所以 __________,或________________
原方程的解是 x1=_____,x2=_________
总结归纳
以上解方程的方法是如何使二次方程转化为一次方程的?用直接开平方法和因式分解法解一元二次方程的步骤分别是什么?
巩固提高
解下列方程:
(1)(x+1)2-4=0; (2)12(2-x)2-9=0.
分 析 两个方程都可以转化为( )2=a的形式,从而用直接开平方法求解.
解:(1)原方程可以变形为(_____)2=____,
(2)原方程可以变形为________________________,
有 ________________________.
所以原方程的解是 x1=________,x2=_________.
达标测评
(A)1、解下列方程:
(1)x2=169; (2)45-x2=0; (3)12y2-25=0;
(4)x2-2x=0; (5)(t-2)(t +1)=0;(6)x(x+1)-5x=0.
(7) x(3x+2)-6(3x+2)=0.
(B)2、小明在解方程x2=3x时,将方程两边同时除以x,得x=3,这样做法对吗?为什么会少一个解?
拓展提高
1、解下列方程:
(1)+2x-3=0 (2) -50x+225=0
(教师引导学生用十字相乘法分解因式。)
2、构造一个以2为根的关于x 的一元二次方程。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网