第三章 数据初步分析中考专题考卷
班级 姓名 学号
一、选择题(每小题3分,共30分)21cnjy
3.(2013陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是( )
A.71.8 B.77 C.82 D.95.7
考点:此题一般考查统三个计量(平均数,中位数、众数)的选择和计算。年年的必考的知识点。21cnjy
解析: ;故选C.
4. (2013济宁)下列说法正确的是( )
A.中位数就是一组数据中最中间的一个数
B.8,9,9,10,10,11这组数据的众数是9
C.如果x1,x2,x3,…,xn的平均数是,那么(x1﹣)+(x2﹣)+…+(xn﹣)=0
D.一组数据的方差是这组数据的极差的平方
考点:方差;算术平均数;中位数;众数;极差.
分析:根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.
解答:解:A.当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;
B.8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;
C.如果x1,x2,x3,…,xn的平均数是,那么(x1﹣)+(x2﹣)+…+(xn﹣)=x1+x2+x3+…+xn﹣n=0,故此选项正确;
D.一组数据的方差与极差没有关系,故此选项错误;
故选:C.
点评:此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.
5.(2013?天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知( )
A.
(1)班比(2)班的成绩稳定
B.
(2)班比(1)班的成绩稳定
C.
两个班的成绩一样稳定
D.
无法确定哪班的成绩更稳定
考点:
方差.
分析:
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
解答:
解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,
∴(1)班成绩的方差>(2)班成绩的方差,
∴(2)班比(1)班的成绩稳定.
故选B.
点评:
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6.(2013山西,4,2分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性:( )
A.甲组比乙组的成绩稳定 B.乙组比甲组的成绩稳定
C.甲、乙两组的成绩一样稳定 D.无法确定
【答案】B
【解析】方差小的比较稳定,故选B。
7.(2013山西,7,2分)下表是我省11个地市5月份某日最高气温(℃)的统计结果:
太原
大同
朔州
忻州
阳泉
晋中
吕梁
长治
晋城
临汾
运城
27
27
28
28
27
29
28
28
30
30
31
该日最高气温的众数和中位数分别是( )
A.27℃,28℃ B.28℃,28℃ C.27℃,27℃ D.28℃,29℃
【答案】B
【解析】28出现4次,最多,所以众数为28,由小到大排列为:27,27,27,28,28,28,28,29,30,30,31,所以,中位数为28,选B。
8. (2013?新疆)某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( )
A.
99.60,99.70
B.
99.60,99.60
C.
99.60,98.80
D.
99.70,99.60
考点:
众数;中位数.
分析:
根据众数和中位数的定义求解即可.
解答:
解:数据99.60出现3次,次数最多,所以众数是99.60;
数据按从小到大排列:99.45,99.60,99.60,99.60,99.70,99.80,99.83,中位数是99.60.
故选B.
点评:
本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
9. (2013?衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).
组员日期
甲
乙
丙
丁
戊
方差
平均成绩
得分
81
79
■
80
82
■
80
那么被遮盖的两个数据依次是( )
A.
80,2
B.
80,
C.
78,2
D.
78,
考点:
方差;算术平均数.
分析:
根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.
解答:
解:根据题意得:
80×5﹣(81+79+80+82)=78,
方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.
故选C.
点评:
本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
10.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为( )
A.3 B.5 C.7 D.9
考点:算术平均数.
分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.
解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,
由图易得当x=7时,直线OP的斜率最大,
即前7年的年平均产量最高,x=7.
故选C.
点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.
二、填空题(每小题3分,共30分)
11.2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表
考点:算术平均数.
分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.
解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),
2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),
则=440.5﹣435.75=4.75(分);
故答案为:4.75.
点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.
12.(2013?宁波)数据﹣2,﹣1,0,3,5的方差是 .
考点:
方差.
分析:
先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.
解答:
解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,
则这组数据的方差是:
[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;
故答案为:.
点评:
本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].
13.(2013?资阳)若一组2,﹣1,0,2,﹣1,a的众数为2,则这组数据的平均数为 .
考点:
众数;算术平均数.
分析:
要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.
解答:
解:数据2,﹣1,0,2,﹣1,a的众数为2,即2的次数最多;
即a=2.
则其平均数为(2﹣1+0+2﹣1+2)÷6=.
故答案为:.
点评:
本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.
14.(2013?内江)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是 5 .
考点:
算术平均数;一元一次不等式组的整数解;中位数.
分析:
先求出不等式组的整数解,再根据中位数是x,求出x的值,最后根据平均数的计算公式即可求出答案.
解答:
解:解不等式组得:3≤x<5,
∵x是整数,
∴x=3或4,
当x=3时,
3,4,6,8,x的中位数是4(不合题意舍去),
当x=4时,
3,4,6,8,x的中位数是4,符合题意,
则这组数据的平均数可能是(3+4+6+8+4)÷5=5;
故答案为:5.
点评:
此题考查了算术平均数、一元一次不等式组的整数解、中位数,关键是根据不等式组的整数解和中位数求出x的值.
15.(2013?温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是 8 分.
考点:
算术平均数.
分析:
根据算术平均数的计算公式,先求出这5个数的和,再除以5即可.
解答:
解:根据题意得:
(8.2+8.3+7.8+7.7+8.0)÷5=8(分 );
故答案为:8.
点评:
此题考查了算术平均数,用到的知识点是算术平均数的计算公式,熟记公式是解决本题的关键.
16.(2013?铁岭)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,,则成绩比较稳定的是 甲 (填“甲”或“乙”)
考点:
方差.
分析:
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
解答:
解:∵,,
∴<,
∴成绩比较稳定的是甲;
故答案为:甲.
点评:
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
17.(2013?株洲)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 88 分.
考点:
加权平均数.
分析:
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.
解答:
解:∵笔试按60%、面试按40%,
∴总成绩是(90×60%+85×40%)=88分,
故答案为:88.
点评:
此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
18. (2013?包头)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是 3 .
环数
7
8
9
人数
3
4
考点:
加权平均数.
分析:
先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.
解答:
解:设成绩为9环的人数是x,根据题意得:
(7×3+8×4+9?x)÷(3+4+x)=8,
解得:x=3,
则成绩为9环的人数是3;
故答案为:3.
点评:
此题考查了加权平均数,关键是根据加权平均数的计算公式和已知条件列出方程,是一道基础题.
19.(2013?咸宁)跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差 变大 (填“变大”、“不变”或“变小”).
考点:
方差.
分析:
根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.
解答:
解:∵李刚再跳两次,成绩分别为7.7,7.9,
∴这组数据的平均数是=7.8,
∴这8次跳远成绩的方差是:
S2= [(7.6﹣7.8)2+(7.8﹣7.8)2+2×(7.7﹣7.8)2+(7.8﹣7.8)2+(8.0﹣7.8)2+2×(7.9﹣7.8)2]=,
,
∴方差变大;
故答案为:变大.
点评:
本题考查方差的定义,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20、(2013?眉山)为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的 众数 决定(在横线上填写:平均数或中位数或众数).
考点:
统计量的选择.
分析:
班长最值得关注的应该是哪种水果爱吃的人数最多,即众数.
解答:
解:平均数、中位数、众数是描述一组数据集中程度的统计量;既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.
故答案为:众数.
点评:
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
三、解答题(每小题10分,共40分)
21、( 2013年浙江省宁波市,22,8)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔,每位女生的身高(cm)统计如下,部分统计量如下表:
平均数
标准差
中位数
甲队
1.72
0.038
乙队
0.025
1.70
(1)求甲队身高的中位数;
(2).求乙队身高的平均数及身高不小于1.70米的概率
(3).如果选拔标准是身高越整齐越好,那么甲乙两个队哪个队被录取?请说明理由.
【解析】(1)甲队身高的中位数是=1.73米(2)乙队身高的平均数为(1.7+1.68+1.72+1.7+1.64+1.7)÷6=1.69米,身高不低于1.70米的频率为=.
(3)∵S乙﹤S甲∴乙队身高比较整齐,乙队被录取.
【答案】(1)1.73米 ,(2)1.69米,(3)乙队将被录取
【点评】本题考查的是统计数据的基本内容,容易马虎的地方是,当有偶数个数据时中位数取按大小排序后中间两个数的平均值,需要有单位的容易忘记写.
22、(2013?咸宁)在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:
11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2
(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是 11.2 ,众数是 11.4 ;
(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由;
(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.
考点:
用样本估计总体;加权平均数;中位数;众数.
分析:
(1)利用中位数、众数的定义进行解答即可;
(2)将其成绩与中位数比较即可得到答案;
(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.
解答:
解:(1)中位数是11.2,众数是11.4.
(2)方法1:根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩比一半以上学生的成绩好.(5分)
方法2:根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩10.9厘米,可以推测他的成绩比全市学生的平均成绩好.(5分)
(3)如果全市有一半左右的学生评定为“优秀”等级,标准成绩应定为11.2厘米(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀”等级.(8分)
点评:
本题考查了加权平均数、中位数及众数的定义,属于统计中的基本题型,需重点掌握.
23、(2013福省福州18)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)
根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的人数有 人;
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?
考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.
专题:图表型.
分析:(1)根据众数的定义,以及中位数的定义解答即可;
(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;
(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.
解答:解:∵B组的人数为12,最多,
∴众数在B组,
男生总人数为4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴中位数在C组;
(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有40×5%=2人;
(3)400×+380×(25%+15%)=180+152=332(人).
答:估计该校身高在160≤x<170之间的学生约有332人.
故答案为(1)B,C;(2)2.
点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
24、(2013甘肃兰州23)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:
(1)样本中喜欢B项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ;
(2)把条形统计图补充完整;
(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?
考点:条形统计图;用样本估计总体;扇形统计图.
分析:(1)利用1减去其它各组所占的比例即可求得喜欢B项目的人数百分比,利用百分比乘以360度即可求得扇形的圆心角的度数;
(2)根据喜欢A的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢B的人数,作出统计图;
(3)总人数1000乘以喜欢乒乓球的人数所占的百分比即可求解.
解答:解:(1)1﹣44%﹣8%﹣28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°;
(2)调查的总人数是:44÷44%=100(人),
则喜欢B的人数是:100×20%=20(人),
;
(3)全校喜欢乒乓球的人数是1000×44%=440(人).
点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(2013?黄冈)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)求这100个样本数据的平均数,众数和中位数;
(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?
考点:
条形统计图;用样本估计总体;加权平均数;中位数;众数.3481324
分析:
(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;
(2)根据平均数、中位数、众的定义分别求法即可;
(3)根据样本估计总体得出答案即可.
解答:
解:(1)根据条形图可得出:
平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),
如图所示:
(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),
根据11出现次数最多,故众数为:11,
根据100个数据的最中间为第50和第51个数据,
按大小排列后第50,51个数据是11,故中位数为:11;
(3)样本中不超过12吨的有20+40+10=70(户),
∴黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).
点评:
此题主要考查了平均数、众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
第三章 数据初步分析中考专题考卷
班级 姓名 学号
一、选择题(每小题3分,共30分)
1.(德阳市2013年)某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款清况如下(单位:元):10, 8,12, 15,10,12,11,9,13,10,则这组数据的
A、众数是10.5 B.方差是3.8 C.极差是8 D,中位数是10
2.(2013年潍坊市)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).
A.众数 B.方差 C.平均数 D.中位数
3.(2013陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是( )
A.71.8 B.77 C.82 D.95.7
4. (2013济宁)下列说法正确的是( )
A.中位数就是一组数据中最中间的一个数
B.8,9,9,10,10,11这组数据的众数是9
C.如果x1,x2,x3,…,xn的平均数是,那么(x1﹣)+(x2﹣)+…+(xn﹣)=0
D.一组数据的方差是这组数据的极差的平方
5.(2013?天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知( )
A.
(1)班比(2)班的成绩稳定
B.
(2)班比(1)班的成绩稳定
C.
两个班的成绩一样稳定
D.
无法确定哪班的成绩更稳定
6.(2013山西,4,2分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性:( )
A.甲组比乙组的成绩稳定 B.乙组比甲组的成绩稳定
C.甲、乙两组的成绩一样稳定 D.无法确定
7.(2013山西,7,2分)下表是我省11个地市5月份某日最高气温(℃)的统计结果:
太原
大同
朔州
忻州
阳泉
晋中
吕梁
长治
晋城
临汾
运城
27
27
28
28
27
29
28
28
30
30
31
该日最高气温的众数和中位数分别是( )
A.27℃,28℃ B.28℃,28℃ C.27℃,27℃ D.28℃,29℃
8. (2013?新疆)某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( )
A.
99.60,99.70
B.
99.60,99.60
C.
99.60,98.80
D.
99.70,99.60
9. (2013?衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).
组员日期
甲
乙
丙
丁
戊
方差
平均成绩
得分
81
79
■
80
82
■
80
那么被遮盖的两个数据依次是( )
A.
80,2
B.
80,
C.
78,2
D.
78,
10.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为( )
A.3 B.5 C.7 D.9
二、填空题(每小题3分,共30分)
11.2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表
12.(2013?宁波)数据﹣2,﹣1,0,3,5的方差是 .
13.(2013?资阳)若一组2,﹣1,0,2,﹣1,a的众数为2,则这组数据的平均数为 .
14.(2013?内江)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是 .
15.(2013?温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是 分.
16.(2013?铁岭)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,,则成绩比较稳定的是 (填“甲”或“乙”)
17.(2013?株洲)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
18. (2013?包头)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是 .
环数
7
8
9
人数
3
4
19.(2013?咸宁)跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差 (填“变大”、“不变”或“变小”).
20、(2013?眉山)为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的 决定(在横线上填写:平均数或中位数或众数).
三、解答题(每小题10分,共40分)
21、( 2013年浙江省宁波市,22,8)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔,每位女生的身高(cm)统计如下,部分统计量如下表:
平均数
标准差
中位数
甲队
1.72
0.038
乙队
0.025
1.70
(1)求甲队身高的中位数;
(2).求乙队身高的平均数及身高不小于1.70米的概率
(3).如果选拔标准是身高越整齐越好,那么甲乙两个队哪个队被录取?请说明理由.
22、(2013?咸宁)在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:
11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2
(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是 ,众数是 ;
(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由;
(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.
23、(2013福省福州18)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)
根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的人数有 人;
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?
24、(2013甘肃兰州23)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:
(1)样本中喜欢B项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ;
(2)把条形统计图补充完整;
(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?
25、(2013?黄冈)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)求这100个样本数据的平均数,众数和中位数;
(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?