初中数学七年级下册浙教版 提取公因式法 同步练习

文档属性

名称 初中数学七年级下册浙教版 提取公因式法 同步练习
格式 zip
文件大小 21.3KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2014-03-27 16:50:29

图片预览

文档简介

提取公因式法同步练习
1.下列由左到右的变形哪些是因式分解,哪些不是(是的打“∨”,不是的打“×”):
(1)(x+3)(x-3)=x2-9; ( ); (2)x2+2x+2=(x+1)2+1;( )
(3)x2-x-12=(x+3)(x-4);( ); (4)x2+3xy+2y2=(x+2y)(x+y);( )
(5)1-=(1+)(1-);( ); (6)m2++2=(m+)2;( )
(7)a3-b3=(a-b)(a2+ab+b2).( )
2.下列各式从左到右的变形中,是因式分解的是( )
A.(a+3)(a-3)=a2-9; B.a3+b3=(a+b)(a2-ab+b2)
C.a2-4a-5=(a-2)2-9; D.a2-4a-5=a(a-4)-5
3.下列各式因式分解错误的是( )
A.8x2y-24xy2=8xy(x-3y); B.ax+bx+ay+by=x(a+b)+y(a+b)
C.12x2y+14x2y2-2xy=2xy(6x+7xy-1); D.x3-8=(x-2)(x2+2x+4)
4.在下列各式中等号右边的括号前填入适当的单项式或正负号,使等式左右两边相等.
(1)-a+b=______(a-b); (2)-2x-2y=_______(x+y);
(3)(a+b)(a-b)=______(a+b)(a-b);(4)(a-b)2=______(b-a)2;
(5)2R-2r=______(R-r); (6)-8a2b-2ab+6b2=________(4a2+a-3b).
5.把下列各式分解因式:
(1)y2-16; (2)25m2-n2;
(3)x2+14x+49; (4)4-4x+x2.
提高训练
6.如果2x2+mx-2可因式分解为(2x+1)(x-2),那么m的值是( )
A.-1 B.1 C.-3 D.3
一、选择题
下列各式公因式是a的是( )
A. ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma
-6xyz+3xy2-9x2y的公因式是( )
A.-3x B.3xz C.3yz D.-3xy
把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是( )
A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)
4.把(x-y)2-(y-x)分解因式为( )
A.(x-y)(x-y-1) B.(y-x)(x-y-1)
C.(y-x)(y-x-1) D.(y-x)(y-x+1)
5.下列各个分解因式中正确的是( )
A.10ab2c+6ac2+2ac=2ac(5b2+3c)
B.(a-b)3-(b-a)2=(a-b)2(a-b+1)
C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)
D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)
6.观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2。其中有公因式的是( )
A.①② B.②③ C.③④ D.①④
二、填空题
7.当n为_____时,(a-b)n=(b-a)n;当n为______时,(a-b)n=-(b-a)n。(其中n为正整数)
8.多项式-ab(a-b)2+a(b-a)2-ac(a-b)2分解因式时,所提取的公因式应是_____。
9.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×________。
10.多项式18xn+1-24xn的公因式是_______。
三、解答题:
11.把下列各式分解因式:
(1)15×(a-b)2-3y(b-a); (2)(a-3)2-(2a-6)
(3)-20a-15ax; (4)(m+n)(p-q)-(m+n)(q+p)
基础训练
1.多项式8x3y2-12xy3z的公因式是_________.
2.多项式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2c B.-ab2 C.-6ab2 D.-6a3b2c
3.下列用提公因式法因式分解正确的是( )
A.12abc-9a2b2=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)
C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy-y=y(x2+5x)
4.下列多项式应提取公因式5a2b的是( )
A.15a2b-20a2b2 B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b D.5a2b4-10a3b3+15a4b2
5.下列因式分解不正确的是( )
A.-2ab2+4a2b=2ab(-b+2a) B.3m(a-b)-9n(b-a)=3(a-b)(m+3n)
C.-5ab+15a2bx+25ab3y=-5ab(-3ax-5b2y); D.3ay2-6ay-3a=3a(y2-2y-1)
6.填空题:
(1)ma+mb+mc=m(________); (2)多项式32p2q3-8pq4m的公因式是_________;
(3)3a2-6ab+a=_________(3a-6b+1);(4)因式分解:km+kn=_________;
(5)-15a2+5a=________(3a-1); (6)计算:21×3.14-31×3.14=_________.
7.用提取公因式法分解因式:
(1)8ab2-16a3b3; (2)-15xy-5x2;
(3)a3b3+a2b2-ab; (4)-3a3m-6a2m+12am.
8.因式分解:-(a-b)mn-a+b.
提高训练
9.多项式m(n-2)-m2(2-n)因式分解等于( )
A.(n-2)(m+m2) B.(n-2)(m-m2)
C.m(n-2)(m+1) D.m(n-2)(m-1)
10.将多项式a(x-y)+2by-2bx分解因式,正确的结果是( )
A.(x-y)(-a+2b) B.(x-y)(a+2b)
C.(x-y)(a-2b) D.-(x-y)(a+2b)
11.把下列各式分解因式:
(1)(a+b)-(a+b)2; (2)x(x-y)+y(y-x);
(3)6(m+n)2-2(m+n); (4)m(m-n)2-n(n-m)2;
(5)6p(p+q)-4q(q+p).
应用拓展
12.多项式-2an-1-4an+1的公因式是M,则M等于( )
A.2an-1 B.-2an C.-2an-1 D.-2an+1
13.用简便方法计算:39×37-13×34=_______.
14.因式分解:x(6m-nx)-nx2.
(1)a(s+t)-(s+t) (2)6a(a+b)-4b(b+a)
(3)(2a-b)2+2a-b (4)2(x-1)2-x+1
(5)3a(x-y)-6b(y-x) (6)(m-n)3+2n(n-m)2