二次函数的图象[下学期]

文档属性

名称 二次函数的图象[下学期]
格式 rar
文件大小 316.6KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2008-04-25 13:52:00

图片预览

文档简介

课件19张PPT。4. 二次函数y=ax2+bx+c的图象(1)函数y=a(x-h)2和y=a(x-h)2+K的图象和性质你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形式吗?函数y=ax2+bx+c的图象 二次函数y=3x2-6x+5的图象是什么形状?它与我们已经作过的二次函数的图象有什么关系? 函数y=ax2+bx+c的图象 在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象. 由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数y=3(x-1)2的图象. 观察图象,回答问题(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (2)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少? 图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.顶点坐标
是点(1,0).二次函数y=3(x-1)2
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴
向右平移了1 个单位二次项系数
相同a>0,开
口都向上.想一想,在同一坐标系中作二次函数y=3(x+1)2的图象,会在什么位置? 在对称轴(直线:x=1)
左侧 (即x<1时),函数
y=3(x-1)2的值随x的
增大而减少,.顶点是最低点,函数
有最小值.当x=1时,
最小值是0..二次函数y=3(x-1)2
与y=3x2的增减性类似.在对称轴(直线:x=1)左侧
(即x>1时),函数y=3(x-1)2
的值随x的增大而增大,.想一想,在同一坐标系中作出二次函数y=3(x+1)2的图象,它的增减性会是什么样? 顶点坐标
是点(-1,0).二次函数y=3(x+1)2
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴
向左平移了1 个单位.1.函数y=3(x+1)2的图象与y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? 二次项系
数相同a>0,
开口都向上.图象是轴对称图形.
对称轴是平行于
y轴的直线:x= -1.在对称轴(直线:x=-1)左侧
(即x<-1时),函数y=3(x+1)2
的值随x的增大而减少,.顶点是最低点,函数
有最小值.当x=-1时,
最小值是0..二次函数y=3(x+1)2
与y=3x2的增减性类似.2.x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x+1)2的值随x的增大而减少?在对称轴(直线:x=-1)右侧
(即x>-1时),函数y=3(x+1)2
的值随x的增大而增大,.猜一猜,函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象的位置和形状.
请你总结二次函数y=a(x-h)2的图象和性质. 2.抛物线y=-3(x-1)2和y=-3(x+1)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,当x<1时, y随着x的增大而增大;在对称轴(x=1)右侧,当x>1时, y随着x的增大而减小.当x=1时,函数y的值最大(是0);
抛物线y=-3(x+1)2在对称轴(x=-1)的左侧,当x<-1时, y随着x的增大而增大;在对称轴(x=-1)右侧,当x>-1时, y随着x的增大而减小.当x=-1时,函数y的值最大(是0).二次函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象4.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x轴向右平移了1个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴向左平移了1个单位.X=-1X=11.抛物线y=-3(x-1)2的顶点是(1,0);对称轴是直线:x=1;抛物线y=-3(x+1)2的顶点是(-1,0);对称轴是直线:x=-1.1.抛物线y=a(x-h)2的顶点是(h,0),对称轴是平行于y轴的直线x=h.3.当a>0时,在对称轴(x=h)的左侧,y随着x的增大而减小;在对称轴(x=h)右侧,y随着x的增大而增大;当x=h时函数y的值最小(是0).
当a<0时,在对称轴(x=h)的左侧,y随着x的增大而增大;在对称轴(x=h)的右侧,y随着x增大而减小;当x=h时,函数y的值最大(是0).二次函数y=a(x-h)2的性质2.当a>0时,抛物线y=a(x-h)2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=a(x-h)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.X=hX=h4. 越大,开口越小,
越小,开口越大.二次函数y=a(x-h)2
与y=ax2的图象形状
相同,可以看作是抛
物线y=ax2整体沿x轴
平移了 个单位(当h>0时,向右移 个单位;当h<0时,向左移 个单位)得到的.二次函数y=a(x-h)2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2 (a>0)y=a(x-h)2 (a<0)(h,0)(h,0)直线x=h直线x=h在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=h时,最小值为0.当x=h时,最大值为0.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:二次函数y=3(x-1)2+2的
图象可以看作是抛物线
y=3x2先沿着x轴向右平移
1个单位,再沿直线x=1向
上平移2个单位后得到的.二次函数y=3(x-1)2+2的图象和抛物线y=3x2,y=3(x-1)2有什么关系?它的开口方向,对称轴和顶点坐标分别是什么?先猜一猜,再做一做,在同一坐标系中作二次函数y=3(x-1)2-2,会是什么样?X=1对称轴仍是平行于y轴的直
线(x=1);增减性与y=3x2类似. 顶点是(1,2).开口向上,当
X=1时有最小
值:且最小值=2.顶点是(1,-2).二次函数y=3(x-1)2-2的
图象可以看作是抛物线
y=3x2先沿着x轴向右平移
1个单位,再沿直线x=1向
下平移2个单位后得到的.二次函数y=3(x-1)2-2的图象与抛物线y=3x2和y=3(x-1)2有何关系?它的开口方向、对称轴和顶点坐标分别是什么? 想一想,二次函数y=-3(x-1)2+2和y=-3x2,y=-3(x-1)2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?再作图看一看.X=1对称轴仍是平行于y轴
的直线(x=1);增减性与
y=3x2类似. 开口向上,
当x=1时y有
最小值:且
最小值= -2.二次函数y=a(x-h)2+k与=ax2的关系一般地,由y=ax2的图象便可得到二次函数y=a(x-h)2+k的图象:y=a(x-h)2+k(a≠0) 的图象可以看成y=ax2的图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.
因此,二次函数y=a(x-h)2+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关. 二次函数y=a(x+h)2+k的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2+k(a>0)y=a(x-h)2+k(a<0)(-h,k)(-h,k)直线x=h直线x=h由h和k的符号确定由h和k的符号确定向上向下当x=h时,最小值为k.当x=h时,最大值为k.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 根据图形填表:1.指出下列函数图象的开口方向对称轴和顶点坐标:习题1.指出下列函数图象的开口方向,对称轴和顶点坐标.必要时作出草图进行验证.习题2.填写下表:1.相同点: (1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 . 2.不同点: 只是位置不同(1)顶点不同:分别是(-h,k)和(0,0).
(2)对称轴不同:分别是直线x= -h和y轴.
(2)最值不同:分别是k和0.
3.联系: y=a(x-h)2+k(a≠0) 的图象可以看成y=ax2的图象先沿x轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.驶向胜利的彼岸回味无穷二次函数y=a(x-h)2+k与=ax2的关系