浙教版八年级下数学第五章特殊平行四边形单元测试A卷(解析版)

文档属性

名称 浙教版八年级下数学第五章特殊平行四边形单元测试A卷(解析版)
格式 zip
文件大小 253.1KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2014-05-18 14:45:57

文档简介

浙教版八年级下数学第五章特殊平行四边形单元测试A卷
一.选择题(共10小题)
1.(2013?威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(  )
 
A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF
2.(2013?铜仁地区)下列命题中,真命题是(  )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
3.(2013?天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(  )
 
A.矩形 B.菱形 C.正方形 D.梯形
故选A.
4.(2013?台湾)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?(  )
 
A.20 B.35 C.40 D.55
5.(2013?台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?(  )
 
A.2 B.3 C.12﹣4 D.6﹣6
6.(2013?台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?(  )
 
A.∠1<∠2 B.∠1>∠2
C.∠3<∠4 D.∠3>∠4
7.(2013?随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是(  )
 
A.25
B.20
C.15
D.10
8.(2013?随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.
其中正确的是(  )
 
A.①② B.①③ C.②③ D.①②③
9.(2013?十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为(  )
 
A.8 B.9 C.10 D.11
10.(2013?邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是(  )
 
A.△AOB≌△BOC B.△BOC≌△EOD
C.△AOD≌△EOD D.△AOD≌△BOC
二.解答题(共5小题)
1.(2013?扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为  .
2.(2013?扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为  .
3.(2013?烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画,连结AF,CF,则图中阴影部分面积为  .
4.(2013?烟台)如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD=  .
5.(2013?无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于  .
浙教版八年级下数学第五章特殊平行四边形单元测试A卷(解析版)
一.选择题(共10小题)
1.(2013?威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(  )
 
A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF
【解析】
根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.21cnjy.com
解:∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形;
当BC=AC时,
∵∠ACB=90°,
则∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故选项A正确,但不符合题意;
当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;
当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;
当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.
故选:D.
2.(2013?铜仁地区)下列命题中,真命题是(  )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
3.(2013?天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(  )2·1·c·n·j·y
 
A.矩形 B.菱形 C.正方形 D.梯形
【解析】
根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【出处:21教育名师】
解:∵△ADE绕点E旋转180°得△CFE,
∴AE=CE,DE=EF,
∴四边形ADCF是平行四边形,
∵AC=BC,点D是边AB的中点,
∴∠ADC=90°,
∴四边形ADCF矩形.
故选A.
4.(2013?台湾)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?(  )
 
A.20 B.35 C.40 D.55
5.(2013?台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?(  )
 
A.2 B.3 C.12﹣4 D.6﹣6
【解析】
过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.【来源:21·世纪·教育·网】
解:如图,过点B作BH⊥AC于H,交GF于K,
∵△ABC是等边三角形,
∴∠A=∠ABC=60°,
∵BD=BE,
∴△BDE是等边三角形,
∴∠BDE=60°,
∴∠A=∠BDE,
∴AC∥DE,
∵四边形DEFG是正方形,GF=6,
∴DE∥GF,
∴AC∥DE∥GF,
∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,
∴F点到AC的距离为6﹣6.
故选D.
6.(2013?台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?(  )21世纪教育网版权所有
 
A.∠1<∠2 B.∠1>∠2
C.∠3<∠4 D.∠3>∠4
【解析】
根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.2-1-c-n-j-y
解:∵四边形ABCD、AEFG均为正方形,
∴∠BAD=∠EAG=90°,
∵∠BAD=∠1+∠DAE=90°,
∠EAG=∠2+∠DAE=90°,
∴∠1=∠2,
在Rt△ABE中,AE>AB,
∵四边形AEFG是正方形,
∴AE=AG,
∴AG>AB,
∴∠3>∠4.
故选D.
7.(2013?随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是(  )  21*cnjy*com
 
A.25
B.20
C.15
D.10
8.(2013?随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.21教育名师原创作品
其中正确的是(  )
 
A.①② B.①③ C.②③ D.①②③
【解析】
先求出DE、CE的长,再根据翻折的性质可得AD=AF,EF=DE,∠AFE=∠D=90°,再利用“HL”证明Rt△ABG和Rt△AFG全等,根据全等三角形对应边相等可得BG=FG,再设BG=FG=x,然后表示出EG、CG,在Rt△CEG中,利用勾股定理列出方程求出x=,从而可以判断①正确;根据∠AGB的正切值判断∠AGB≠60°,从而求出∠CGF≠60°,△CGF不是等边三角形,FG≠FC,判断②错误;先求出△CGE的面积,再求出EF:FG,然后根据等高的三角形的面积的比等于底边长的比求解即可得到△FGC的面积,判断③正确.
解:∵正方形ABCD中,AB=3,CD=3DE,
∴DE=×3=1,CE=3﹣1=2,
∵△ADE沿AE对折至△AFE,
∴AD=AF,EF=DE=1,∠AFE=∠D=90°,
∴AB=AF=AD,
在Rt△ABG和Rt△AFG中,,
∴Rt△ABG≌Rt△AFG(HL),
∴BG=FG,
设BG=FG=x,则EG=EF+FG=1+x,CG=3﹣x,
在Rt△CEG中,EG2=CG2+CE2,
即(1+x)2=(3﹣x)2+22,
解得,x=,
∴CG=3﹣=,
∴BG=CG=,
即点G是BC中点,故①正确;
∵tan∠AGB===2,
∴∠AGB≠60°,
∴∠CGF≠180°﹣60°×2≠60°,
又∵BG=CG=FG,
∴△CGF不是等边三角形,
∴FG≠FC,故②错误;
△CGE的面积=CG?CE=××2=,
∵EF:FG=1:=2:3,
∴S△FGC=×=,故③正确;
综上所述,正确的结论有①③.
故选B.
9.(2013?十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为(  )21*cnjy*com
 
A.8 B.9 C.10 D.11
【解析】
首先构造直角三角形,进而根据等腰梯形的性质得出∠B=60°,BF=EC,AD=EF=5,求出BF即可.
解:过点A作AF⊥BC于点F,过点D作DE⊥BC于点E,
∵梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,
∴∠B=60°,BF=EC,AD=EF=5,
∴cos60°===,
解得:BF=1.5,
故EC=1.5,
∴BC=1.5+1.5+5=8.
故选:A.
10.(2013?邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是(  )
 
A.△AOB≌△BOC B.△BOC≌△EOD
C.△AOD≌△EOD D.△AOD≌△BOC
【解析】
根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.
解:∵AD=DE,DO∥AB,
∴OD为△ABE的中位线,
∴OD=OC,
∵在△AOD和△EOD中,

∴△AOD≌△EOD(SAS);
∵在△AOD和△BOC中,

∴△AOD≌△BOC(SAS);
∵△AOD≌△EOD,
∴△BOC≌△EOD;
故B、C、D均正确.
故选A.
二.解答题(共5小题)
1.(2013?扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为  .
【解析】
设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.21·cn·jy·com
解:设矩形一条边长为x,则另一条边长为x﹣2,
由勾股定理得,x2+(x﹣2)2=42,
整理得,x2﹣2x﹣6=0,
解得:x=1+或x=1﹣(不合题意,舍去),
另一边为:﹣1,
则矩形的面积为:(1+)(﹣1)=6.
故答案为:6.
2.(2013?扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为  .www.21-cn-jy.com
【解析】
过A作AE∥DC交BC于E,得出等边三角形ABE和平行四边形ADCE,推出AB=AD=DC=BE=CE,求出AD长,即可得出答案.21·世纪*教育网
解:
过A作AE∥DC交BC于E,
∵AD∥BC,
∴四边形ADCE是平行四边形,
∴AD=EC=DC,AE=DC,
∵AB=CD,
∴AB=AE,
∴△ABE是等边三角形,
∴BE=AB=AE=DC=AD=CE,
∵BC=12,
∴AB=AD=DC=6,
∴梯形ABCD的周长是AD+DC+BC+AB=6+6+12+6=30,
故答案为:30.
3.(2013?烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画,连结AF,CF,则图中阴影部分面积为  .
【解析】
设正方形EFGB的边长为a,表示出CE、AG,然后根据阴影部分的面积=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF,列式计算即可得解.www-2-1-cnjy-com
解:设正方形EFGB的边长为a,则CE=4﹣a,AG=4+a,
阴影部分的面积=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF
=+a2+a(4﹣a)﹣a(4+a)
=4π+a2+2a﹣a2﹣2a﹣a2
=4π.
故答案为:4π.
4.(2013?烟台)如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD=  .【来源:21cnj*y.co*m】
【解析】
设梯形的四边长为5,5,x,2x,根据平均数求出四边长,求出△BDC是直角三角形,根据勾股定理求出即可.【版权所有:21教育】
解:设梯形的四边长为5,5,x,2x,
则=,
x=5,
则AB=CD=5,AD=5,BC=10,
∵AB=AD,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵∠ABC=60°,
∴∠DBC=30°,
∵等腰梯形ABCD,AB=DC,
∴∠C=∠ABC=60°,
∴∠BDC=90°,
∴在Rt△BDC中,由勾股定理得:BD==5,
故答案为:5.
30.(2013?无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于  .21教育网
【解析】
根据菱形的性质得出OD=OB,根据三角形的中位线性质得出OE=AB,代入求出即可.
解:∵四边形ABCD是菱形,
∴DO=OB,
∵E是AD的中点,
∴OE=AB,
∵AB=8,
∴OE=4.
故答案为4.