1.3解直角三角形强化练习 (无答案)2022-2023学年浙教版九年级数学下册

文档属性

名称 1.3解直角三角形强化练习 (无答案)2022-2023学年浙教版九年级数学下册
格式 docx
文件大小 394.5KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2023-04-17 20:13:03

图片预览

文档简介

1.3解直角三角形强化练习
一、单选题
1、数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )(精确到1m.参考数据:,,,)
A.28m B.34m C.37m D.46m
2、上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,10时到达B处(如图).从A,B两处分别测得小岛M在北偏东45°和北偏东15°方向,那么船在B处时与小岛M的距离( )
A.海里 B.海里 C.40海里 D.海里
3、△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为( )
A. B.12 C. D.
4、如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于(  )
A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米
5、某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为( )
A.20米 B.10米 C.10米 D.20米
6、如图,在中, ,分别以点为圆心,的长为半径作弧,两弧交于点,连接则四边形的面积为( )
A. B. C. D.
7、如图,在正六边形ABCDEF中,点G是AE的中点,若AB=4,则CG的长为( )
A.5 B.6 C.7 D.8
8、如图,矩形的两对角线相交于点,若,,则的度数为( )
A. B. C. D.
二、填空题
1、如图,某时刻阳光通过窗口AB照射到室内,在地面上留下4米宽的“亮区”DE,光线与地面所成的角(如∠BEC)的正切值是,那么窗口的高AB等于___米.
2、如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.
3、如图,我海军舰艇在某海域C岛附近巡航,计划从A岛向北偏东80°方向的B岛直线行驶.测得C岛在A岛的北偏东50°方向,在B岛的北偏西40°方向.A,B之间的距离为80nmile,则C岛到航线AB的最短距离是_____nmile.(参考数据:,)
4、如图,一架水平飞行的无人机在A处测得正前方河岸边C处的俯角为α,,无人机沿水平线AF方向继续飞行80米至B处时,被河对岸D处的小明测得其仰角为.无人机距地面的垂直高度用AM表示,点M,C,D在同一条直线上,其中米,则河流的宽度CD为______.
5、如图,直线AB与x轴交于点A(3,0),与y轴交于点B(0,),D为线段AB上一动点(D点不与A、B重合),沿OD折叠,点A恰好落在△ABO的边上,则D点坐标是__________.
6、菱形ABCD中,已知AB=4,∠B:∠C=1:2,那么BD的长是 _____.
三、解答题
1、如图,在中,∠ACB=90°,CD是斜边AB的中线,过点C、D分别作,交于点E,连结BE.
(1)求证:四边形CDBE是菱形.
(2)若AB=10,,则菱形CDBE的面积为______.
2、某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心处,另一端系小重物.测量时,使支杆、量角器90°刻度线与铅垂线相互重合(如图①),绕点转动量角器,使观测目标与直径两端点共线(如图②),此目标的仰角.请说明两个角相等的理由.
(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点处测得顶端的仰角,观测点与树的距离为5米,点到地面的距离为1.5米;求树高.(,结果精确到0.1米)
(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端距离地面高度(如图④),同学们讨论,决定先在水平地面上选取观测点 (在同一直线上),分别测得点的仰角,再测得间的距离,点 到地面的距离均为1.5米;求(用表示).
3、有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.
(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;
(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).
(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
4、如图,某学习小组在教学楼的顶部观测信号塔底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼的高度为20m,求信号塔的高度(计算结果保冒根号).
5、如图,雨伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC.当伞收紧时,点D与点M重合,且点A,E(F),D在同一条直线上.已知伞骨的部分长度如下(单位:cm):DE=DF=AE=AF=40.
(1)求AM的长.
(2)当伞撑开时,量得∠BAC=110°,求AD的长.(结果精确到1cm)
参考数据:.
6、如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度,在居民楼前方有一斜坡,坡长,斜坡的倾斜角为,.小文在点处测得楼顶端的仰角为,在点处测得楼顶端的仰角为(点,,,在同一平面内).
(1)求,两点的高度差;
(2)求居民楼的高度.(结果精确到,参考数据:)