1、如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.14 B.15 C.16 D.17
考点:菱形的性质;等边三角形的判定与性质;正方形的性质.
分析:根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.
解答:解:∵四边形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AC=AB=4,
∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,
故选C.
点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.
2、如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A. 48 B. 60 C. 76 D. 80
考点: 勾股定理;正方形的性质.
分析: 由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.
解答: 解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=100﹣×6×8=76.故选C.
点评: 本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.
3、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有( )个.
A. 2 B. 3 C. 4 D. 5
考点: 正方形的性质;全等三角形的判定与性质;等边三角形的性质.
分析: 通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论
解答: 解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.
4、
9、(2013台湾、30)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4
考点:正方形的性质.
分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.
解答:解:∵四边形ABCD、AEFG均为正方形,
∴∠BAD=∠EAG=90°,
∵∠BAD=∠1+∠DAE=90°,
∠EAG=∠2+∠DAE=90°,
∴∠1=∠2,
在Rt△ABE中,AE>AB,
∵四边形AEFG是正方形,
∴AE=AG,
∴AG>AB,
∴∠3>∠4.
故选D.
5、如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 10 .
考点: 轴对称-最短路线问题;正方形的性质.3718684
分析: 由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
解答: 解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.
6、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 135 度.
考点: 勾股定理的逆定理;正方形的性质;旋转的性质.3718684
分析: 首先根据旋转的性质得出∠EBE′=90°,BE=BE′=2,AE=E′C=1,进而根据勾股定理的逆定理求出△EE′C是直角三角形,进而得出答案.
解答: 解:连接EE′,∵将△ABE绕点B顺时针旋转90°到△CBE′的位置,AE=1,BE=2,CE=3,∴∠EBE′=90°,BE=BE′=2,AE=E′C=1,∴EE′=2,∠BE′E=45°,∵E′E2+E′C2=8+1=9,EC2=9,∴E′E2+E′C2=EC2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠BE′C=135°.故答案为:135.
点评: 此题主要考查了勾股定理以及逆定理,根据已知得出△EE′C是直角三角形是解题关键.
7、在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.
其中正确的序号是 ①②④ (把你认为正确的都填上).
考点: 正方形的性质;全等三角形的判定与性质;等边三角形的性质.
分析: 根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.
解答: 解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.
点评: 本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.
8、
21、(2013年南京) 如图,在四边形ABCD中,AB=BC,对角线BD平分
ABC,P是BD上一点,过点P作PMAD,PNCD,垂
足分别为M、N。
(1) 求证:ADB=CDB;
(2) 若ADC=90,求证:四边形MPND是正方形。
解析:
证明:(1) ∵BD平分ABC,∴ABD=CBD。又∵BA=BC,BD=BD,
∴△ABD △CBD。∴ADB=CDB。 (4分)
(2) ∵PMAD,PNCD,∴PMD=PND=90。
又∵ADC=90,∴四边形MPND是矩形。
∵ADB=CDB,PMAD,PNCD,∴PM=PN。
∴四边形MPND是正方形。 (8分)
9、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转 90 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
考点: 旋转的性质;全等三角形的判定与性质;正方形的性质.
专题: 证明题.
分析: (1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
解答: (1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50(平方单位).
点评: 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.
10、)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
考点:正方形的性质;全等三角形的判定与性质.
专题:证明题;探究型.
分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
解答:(1)证明:在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF(SAS).
∴CE=CF.(3分)
(2)解:GE=BE+GD成立.(4分)
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,(5分)
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)
又∠GCE=45°,∴∠GCF=∠GCE=45°.
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG(SAS).
∴GE=GF.(7分)
∴GE=DF+GD=BE+GD.(8分)
点评:本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.
11、如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
考点:正方形的性质;全等三角形的判定与性质.
专题:证明题.
分析:(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;
(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.
解答:(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,
,
∴△ABE≌△DAF(ASA),
∴AF=BE;
(2)解:MP与NQ相等.
理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,
则与(1)的情况完全相同.
12、如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,
(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
考点:反比例函数与一次函数的交点问题.
分析:(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;
(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.
解答:解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),
∴AB=5,
∵四边形ABCD为正方形,
∴点C的坐标为(5,﹣3).
∵反比例函数y=的图象经过点C,
∴﹣3=,解得k=﹣15,
∴反比例函数的解析式为y=﹣;
∵一次函数y=ax+b的图象经过点A,C,
∴,
解得,
∴一次函数的解析式为y=﹣x+2;
(2)设P点的坐标为(x,y).
∵△OAP的面积恰好等于正方形ABCD的面积,
∴×OA |x|=52,
∴×2|x|=25,
解得x=±25.
当x=25时,y=﹣=﹣;
当x=﹣25时,y=﹣=.
∴P点的坐标为(25,﹣)或(﹣25,).
点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.
矩形
1、如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )
A. 矩形 B. 菱形 C. 正方形 D. 梯形
考点: 旋转的性质;矩形的判定.3718684
分析: 根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.
解答: 解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.
点评: 本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.
2、(2013四川南充,3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是 ( )
A.12 B. 24 C. 12 D. 16
答案:D
解析:由两直线平行内错角相等,知∠DEF=∠EFB=60°,又∠AEF=∠EF=120°,所以,∠E=60°,E=AE=2,求得,所以,AB=2,矩形ABCD的面积为S=2×8=16,选D。
3、(2013四川宜宾)矩形具有而菱形不具有的性质是( )
A.两组对边分别平行 B.对角线相等
C.对角线互相平分 D.两组对角分别相等
考点:矩形的性质;菱形的性质.
分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.
解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;
B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;
C.矩形与菱形的对角线都互相平分,故本选项错误;
D.矩形与菱形的两组对角都分别相等,故本选项错误.
故选B.
点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.
4、(2013 包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是( )
A. S1>S2 B. S1=S2 C. S1<S2 D. 3S1=2S2
考点: 矩形的性质.
分析: 由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.
解答: 解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,故选B.
点评: 本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题.
5、如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是( )
A. 8 B. 6 C. 4 D. 2
考点: 等腰三角形的判定;矩形的性质.
分析: 根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.
解答: 解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∴△ABO,△BCO,△DCO,△ADO都是等腰三角形,故选:C.
点评: 此题主要考查了等腰三角形的判定,以及矩形的性质,关键是掌握矩形的对角线相等且互相平分.
6、(2013年河北)如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.
以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是
A.两人都对 B.两人都不对
C.甲对,乙不对 D.甲不对,乙对
答案:A
解析:对于甲:由两组对边分别相等的四边形是平行四边形及角B为90度,知ABCD是矩形,正确;对于乙:对角线互相平分的四边形是平行四边形及角B为90度,可判断ABCD是矩形,故都正确,选A。
8、(2013 遵义)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= 9 cm.
考点: 三角形中位线定理;矩形的性质.3718684
分析: 先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.
解答: 解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4cm,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.
9、如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为__________
答案:20
解析:由勾股定理,得AC=13,因为BO为直角三角形斜边上的中线,所以,BO=6.5,由中位线,得MO=2.5,所以,四边形ABOM的周长为:6.5+2.5+6+5=20
10、将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,
旋转角为 (0<<90)。若1=110,则= 。
答案:20
解析:,延长交CD于E,则=20,ED=160,由四边形的内角和为360,可得=20
11、如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.
专题:动点型.
分析:当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.
解答:解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE===3,
∴OE=OD﹣DE=5﹣3=2,
∴此时点P坐标为(2,4);
(2)如答图②所示,OP=OD=5.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE===3,
∴此时点P坐标为(3,4);
(3)如答图①所示,PD=OD=5,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE===3,
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).
点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.
12、在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;
求证:DF=DC.
考点: 矩形的性质;全等三角形的判定与性质.3718684
专题: 证明题.
分析: 根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE.然后利用全等三角形的性质解决问题.
解答: 证明:连接DE.(1分)∵AD=AE,∴∠AED=∠ADE.(1分)∵有矩形ABCD,∴AD∥BC,∠C=90°.(1分)∴∠ADE=∠DEC,(1分)∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,(1分)∴△DFE≌△DCE.∴DF=DC.(1分)
点评: 此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题.
13、如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
考点:全等三角形的判定与性质;矩形的判定与性质.
专题:证明题.
分析:过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证,
解答:证明:如图,过点B作BF⊥CE于F,
∵CE⊥AD,
∴∠D+∠DCE=90°,
∵∠BCD=90°,
∴∠BCF+∠DCE=90°,
∴∠BCF=∠D,
在△BCF和△CDE中,,
∴△BCF≌△CDE(AAS),
∴BF=CE,
又∵∠A=90°,CE⊥AD,BF⊥CE,
∴四边形AEFB是矩形,
∴AE=BF,
∴AE=CE.
14、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)BD与CD有什么数量关系,并说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
考点: 矩形的判定;全等三角形的判定与性质.
专题: 证明题.
分析: (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.
解答: 解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴ AFBD是矩形.
15、如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5个单位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的长.
(2)若ABn的长为56,求n.
考点: 平移的性质;一元一次方程的应用;矩形的性质.3718684
专题: 规律型.
分析: (1)根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长;(2)根据(1)中所求得出数字变化规律,进而得出ABn=(n+1)×5+1求出n即可.
解答: 解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴ABn=(n+1)×5+1=56,解得:n=10.
点评: 此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.
16、)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
考点: 矩形的判定;平行线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.3718684
分析: (1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.
解答: (1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6,∵MN∥BC,∴∠1=∠5,3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.
点评: 此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.
17、如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.
考点:作图—复杂作图.
分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.
解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.
点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.
18、如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求的值.
考点: 矩形的性质;勾股定理;翻折变换(折叠问题).3718684
分析: (1)由折叠的性质可得:∠ANM=∠CNM,由四边形ABCD是矩形,可得∠ANM=∠CMN,则可证得∠CMN=∠CNM,继而可得CM=CN;(2)首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案.
解答: (1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.
点评: 此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
20、如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6) .
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
【答案】(1)B(2,4),C(6,4),D(6,6).
(2)如图,矩形ABCD向下平移后得到矩形,
设平移距离为a,则A′(2,6-a),C′(6,4-a)
∵点A′,点C′在y=的图象上,
∴2(6-a)=6(4-a),
解得a=3,
∴点A′(2,3),
∴反比例函数的解析式为y=.
菱形
1.如图,在 ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是( )
A. 梯形 B. 矩形 C. 菱形 D. 正方形
考点: 菱形的判定;平行四边形的性质.
分析: 首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.
解答: 解:四边形AECF是菱形,理由:∵在 ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.
点评: 此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.
2、如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
A. 甲正确,乙错误 B. 乙正确,甲错误 C. 甲、乙均正确 D. 甲、乙均错误
考点: 菱形的判定.3718684
分析: 首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.
解答: 解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.
点评: 此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
3、如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可)
答案:OA=OC或AD=BC或AD//BC或AB=BC等
考点:菱形的判别方法.
点评:此题属于开放题型,答案不唯一.主要考查了菱形的判定,关键是掌握菱形的判定定理.
如图,菱形ABCD中,AB=4,,,垂足分别为E,F,连接EF,则的△AEF的面积是 .
答案:
解析:依题可求得:∠BAD=120°,∠BAE=∠DAF=30°,BE=DF=2,AE=AF=,所以,三角形AEF为等边三角形,高为3,面积S==
4、(2013 泰州)对角线互相 垂直 的平行四边形是菱形.
考点: 菱形的判定.
分析: 菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形,根据以上内容填上即可.
解答: 解:对角线互相垂直的平行四边形是菱形,故答案为:垂直.
点评: 本题考查了对菱形的判定的应用,注意:菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形.
5、(2013年南京)如图,将菱形纸片ABCD折迭,使点A恰好落在菱形的对称中心O处,折痕为EF。若菱形ABCD的边长为2 cm, A=120,则EF= cm。
答案:
解析:点A恰好落在菱形的对称中心O处,如图,P为AO中点,所以E为A职点,AE=1,EAO=60,EP=,所以,EF=
7、(2013 淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是 3 .
如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是 ()n﹣1 .
考点: 菱形的性质.3718684
专题: 规律型.
分析: 连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.
解答: 解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.
点评: 此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.
8、如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
其中正确结论的为 ①③④ (请将所有正确的序号都填上).
考点: 菱形的判定;等边三角形的性质;含30度角的直角三角形.
分析: 根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
解答: 解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,[]∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③说法正确,故答案为①③④.
点评: 本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.
9、(2013 内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= 5 .
考点: 轴对称-最短路线问题;菱形的性质.
分析: 作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出OC、OB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.
解答: 解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,在Rt△BOC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.
点评: 本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.
10、如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边
形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是 20 ;四边形A2013B2013C2013D2013的周长是 .
考点: 中点四边形;菱形的性质.
专题: 规律型.
分析: 根据菱形的性质以及三角形中位线的性质以及勾股定理求出四边形各边长得出规律求出即可.
解答: 解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,∴A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,∴四边形A2B2C2D2的周长是:5×4=20,同理可得出:A3D3=5×,C3D3=AC=×5,A5D5=5×()2,C5D5=AC=()2×5,…∴四边形A2013B2013C2013D2013的周长是:=.故答案为:20,.
11、在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为 20 .
考点:菱形的判定与性质;直角三角形斜边上的中线;勾股定理.
分析:首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
解答:解:∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴BD=DF=AC,
∴四边形BGFD是菱形,
设GF=x,则AF=13﹣x,AC=2x,
在Rt△ACF中,AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,
解得:x=5,
故四边形BDFG的周长=4GF=20.
故答案为:20.
点评:本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.
12、如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.
考点: 菱形的性质.3481324
专题: 证明题.
分析: 根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.
解答: 证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△GHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.
点评: 本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.
13、(2013 十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
考点: 反比例函数综合题.3718684
分析: (1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状.
解答: 解:(1)设反比例函数的解析式为y=(k>0),∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴m=﹣1,∴A(﹣1,﹣2),又∵点A在y=上,∴k=﹣2,∴反比例函数的解析式为y=;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1;(3)四边形OABC是菱形.证明:∵A(﹣1,﹣2),∴OA==,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y=上,∴n=1,∴C(2,1),OC==,∴OC=OA,∴四边形OABC是菱形.
点评: 本题主要考查了反比例函数的综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及菱形的判定定理,此题难度不大,是一道不错的中考试题.
14、(2013 恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.
考点: 菱形的判定;梯形;中点四边形.
专题: 证明题.
分析: 连接AC、BD,根据等腰梯形的对角线相等可得AC=BD,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EF=GH=AC,HE=FG=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形判定即可.
解答: 证明:如图,连接AC、BD,∵AD∥BC,AB=CD,∴AC=BD,∵E、F、G、H分别为边AB、BC、CD、DA的中点,∴在△ABC中,EF=AC,在△ADC中,GH=AC,∴EF=GH=AC,同理可得,HE=FG=BD,∴EF=FG=GH=HE,∴四边形EFGH为菱形.
点评: 本题考查了菱形的判定,等腰梯形的对角线相等,三角形的中位线平行于第三边并且等于第三边的一半,作辅助线是利用三角形中位线定理的关键,也是本题的难点.
15、已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.
考点: 菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理.3718684
分析: (1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等;(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解.
解答: (1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:∵∠BAD=60°,∴∠DAO=∠BAD=×60°=30°,∵∠EOD=30°,∴∠AOE=90°﹣30°=60°,∴∠AEF=180°﹣∠BOD﹣∠AOE=180°﹣30°﹣60°=90°,∵菱形的边长为2,∠DAO=30°,∴OD=AD=×2=1,∴AO===,∴AE=CF=×=,∵菱形的边长为2,∠BAD=60°,∴高EF=2×=,在Rt△CEF中,CE===.
点评: 本题考查了菱形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,(2)求出△CEF是直角三角形是解题的关键,也是难点.
16、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.
考点:菱形的判定与性质;全等三角形的判定与性质.
分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF,可得∠AFD=∠AFB,进而得到∠AFD=∠CFE;
(2)首先证明∠CAD=∠ACD,再根据等角对等边可得AD=CD,再有条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是菱形;
(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD.
解答:(1)证明:∵在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
∵在△ABF和△ADF中,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵∠AFB=∠AFE,
∴∠AFD=∠CFE;
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)当EB⊥CD时,∠EFD=∠BCD,
理由:∵四边形ABCD为菱形,
∴BC=CD,∠BCF=∠DCF,
在△BCF和△DCF中,
∴△BCF≌△DCF(SAS),
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠EFD=∠BCD.
点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
17、(2013 遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:
(1)△ADE≌△CDF;
(2)四边形ABCD是菱形.
考点: 菱形的判定;全等三角形的判定与性质;平行四边形的性质.
专题: 证明题.
分析: (1)首先根据平行四边形的性质得出∠A=∠C,进而利用全等三角形的判定得出即可;(2)根据菱形的判定得出即可.
解答: 解:(1)∵DE⊥AB,DF⊥BC∴∠AED=∠CFD=90°,∵四边形ABCD是平行四边形∴∠A=∠C,∵在△AED和△CFD中∴△AED≌△CFD(AAS);(2)∵△AED≌△CFD,∴AD=CD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.
点评: 此题主要考查了菱形的性质和全等三角形的判定等知识,根据已知得出∠A=∠C是解题关键.
18、如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
解析:证明:(1)∵E是AD的中点,∴AE=ED.……………………………(1分)
∵AF∥BC,∴∠AFE=∠DBE, ∠FAE=∠BDE,
∴△AFE≌△DBE. ………………………(2分)
∴AF=DB.
∵AD是BC边上的中点,∴DB=DC,AF=DC ……………(3分)
(2)四边形ADCF是菱形. …………………………………(4分)
理由:由(1)知,AF=DC,
∵AF∥CD, ∴四边形ADCF是平行四边形. ……(5分)
又∵AB⊥AC, ∴△ABC是直角三角形
∵AD是BC边上的中线, ∴. … (6分)
∴平行四边形ADCF是菱形. …………………(7分)
A
B
C
D
N
M
P
A
B
C
D
B’
1
C’
D’
(第22题图)