中小学教育资源及组卷应用平台
第五章 特殊平行四边形好题精选30题
一.选择题(共12小题)
1.下列各图是由若干个正方形和长方形组成的,其中能表示等式(a+b)2=a2+2ab+b2的是( )
A. B.
C. D.
2.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为( )
A.9.6cm B.10cm C.20cm D.12cm
第2题图 第3题图
3.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD于点E,则AE的长是( )
A.4 B. C.5 D.
4.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
第4题图 第5题图 第6题图
5.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM的长为( )
A.2 B.2 C.4﹣ D.8﹣4
6.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为( )
A.①②④⑤⑥ B.①②④⑤ C.②④⑤ D.②④⑤⑥
7.如图,在△ABC中,∠ABC=90°,分别以△ABC的边向外作正方形,连接EC、BF,过B作BM⊥FG于M,交AC于N,下列结论:
①△ABF≌△AEC;②S四边形ABDE=2S△AEC;③S四边形AFMN=2S△ABF;④S正方形ABDE=S四边形AFMN,其中正确的是( )
A.①② B.①②③ C.① D.①②③④
第7题图 第8题图 第9题图
8.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是( )
A.(4,5) B.(5,4) C.(4,4) D.(5,3)
9.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
10.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论,其中正确结论的个数是( )
①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④S△AOE:S△BCF=2:3.
A.1个 B.2个 C.3个 D.4个
第10题图 第11题图 第12题图
11.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E.当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC
C.∠FCE=90° D.四边形AFCE是矩形
12.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为( )
A.25° B.30° C.35° D.40°
二.填空题(共8小题)
13.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO= .
第13题图 第14题图 第16题图
14.如图:长方形ABCD中,AD=26,AB=12,点Q是BC的中点,点P在AD边上运动,当△BPQ是以QP为腰的等腰三角形时,AP的长为 .
15.菱形ABCD中,∠A=60°,AB=6,点P是菱形内一点,若PB=PD=2,则AP的长是 .
16.如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接BE,过A点作AF⊥AE交DP于点F,连接BF,若AE=2,正方形ABCD的面积为 .
17.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为 .
第17题图 第18题图 第19题图
18.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,连接DG.点E从点C运动到点D的过程中,DG的最小值为 .
19.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AE,延长EF交边BC于点G,连结AG,CF,则下列结论:
①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=;
其中正确的结论有 .
20.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于 .
三.解答题(共15小题)
21.如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.
(1)求证:四边形OBCE是平行四边形;
(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.
22.“三等分一个角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的,在探索中,有人曾利用过如下的图形:其中,ABCD是长方形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠GFA,你能证明∠ECB=∠ACB吗?
23.如图,在矩形ABCD中,AB=6,BC=8,动点P在边AD上以每秒2个单位的速度从A出发,沿AD向D运动,同时动点Q在边BD上以每秒5个单位的速度从D出发,沿DB向B运动,当其中有一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒.
(1)填空:当某一时刻t,使得t=1时,P、Q两点间的距离PQ= ;
(2)是否存在以P、D、Q中一点为圆心的圆恰好过另外两个点?若存在求出此时t的值;若不存在,请说明理由.
24.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若AE=10,BF=24,CE=7,求四边形ABCD的面积.
25.如图,A,B,C,D为矩形的四个顶点,AB=4cm,AD=2cm,动点P、Q分别从点A,C同时出发,都以1cm/s的速度运动,其中点P由A运动到B停止,点Q由点C运动到点D停止.
(1)求四边形PBCQ的面积;
(2)P、Q两点从出发开始到几秒时,点P、Q、D组成的三角形是等腰三角形?
26.如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.
(1)求证:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.
27.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.
【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG= S正方形ABCD;
【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);
【探究】如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.
28.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.
(1)如图2,取AB的中点H,连接HE,求证:AE=EF.
(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.
29.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)分别求出(2)中菱形AQCP的周长和面积.
30.如图,点O为平面直角坐标系的原点,在长方形OABC中,OC∥AB,OA∥BC,两边OC、OA分别在x轴和y轴上,且点B(a,b)满足:+(2b+6)2=0.
(1)求点B的坐标;
(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:3两部分,求点P的坐标;
(3)如图2,M为线段OC一点,且∠ABM=∠AMB,N是x轴负半轴上一动点,∠MAN的平分线AD交BM的延长线于点D,在点N运动的过程中,试判断∠ANM与∠D的数量关系,并说明理由.
第五章 特殊平行四边形好题精选 答案与解析
一.选择题(共12小题)
1.下列各图是由若干个正方形和长方形组成的,其中能表示等式(a+b)2=a2+2ab+b2的是( )
A. B.
C. D.
【分析】根据矩形的性质,利用边长为(a+b)的正方形由一个边长为a的正方形、一个边长为b的正方形和一个长宽为a、b的矩形组成可对各选项矩形判断.
【解答】解:对于等式(a+b)2=a2+2ab+b2,可看作边长为(a+b)的正方形由一个边长为a的正方形、一个边长为b的正方形和一个长宽为a、b的矩形组成.
故选:B.
【点评】本题考查了矩形的性质:平行四边形的性质矩形都具有;矩形的四个角都是直角;邻边垂直;矩形的对角线相等.
2.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为( )
A.9.6cm B.10cm C.20cm D.12cm
【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.
【解答】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形等宽,
∴AR=AS,
∵AR BC=AS CD,
∴BC=CD,
∴平行四边形ABCD是菱形,
∴AC⊥BD,
在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,
∴AB==10(cm),
故选:B.
【点评】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.
3.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD于点E,则AE的长是( )
A.4 B. C.5 D.
【分析】根据AC:BD=3:4和菱形对角线的性质得:AO:OB=3:4,设AO=3x,OB=4x,则AB=5x,由S菱形ABCD=,可得AE的长.
【解答】解:∵四边形ABCD是菱形,
∴AO=AC,OB=BD,AC⊥BD,
∵AC:BD=3:4,
∴AO:OB=3:4,
设AO=3x,OB=4x,则AB=5x,
∵AB=5,
∴5x=5,x=1,
∴AC=6,BD=8,
S菱形ABCD=,
∴,
AE=,
故选:B.
【点评】此题主要考查了菱形的性质以及勾股定理,正确利用菱形的面积求出AE的长是解题关键.
4.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.
【解答】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵点E、F、H分别是AB、BC、CD的中点,
∴BE=CF,
在△BCE与△CDF中,
∴△BCE≌△CDF,(SAS),
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF,故①正确;
在Rt△CGD中,H是CD边的中点,
∴HG=CD=AD,故④正确;
连接AH,
同理可得:AH⊥DF,
∵HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD,故②正确;
∴∠DAG=2∠DAH,
同理:△ADH≌△DCF,
∴∠DAH=∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠CHG=∠DAG.故③正确.
故选:D.
【点评】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
5.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM的长为( )
A.2 B.2 C.4﹣ D.8﹣4
【分析】过点M作MF⊥AC于点F,根据角平分线的性质可知FM=BM,再由四边形ABCD为正方形,可得出∠FAM=45°,在直角三角形中用∠FAM的正弦值即可求出FM与AM的关系,最后由AM+BM=4列方程求解即可..
【解答】解:过点M作MF⊥AC于点F,如图所示.
∵MC平分∠ACB,四边形ABCD为正方形,
∴∠CAB=45°,FM=BM.
在Rt△AFM中,∠AFM=90°,∠FAM=45°,AM=2,
∴BM=FM=AM sin∠FAM=AM.
又∵AM+BM=4,
∴AM+AM=4,解得:AM=8﹣4.
故选:D.
【点评】本题考查了正方形的性质以及角平分线的性质,解题的关键是求出FM的长度与AM的关系.本题属于基础题,难度不大,解决该题型题目时,根据角平分的性质及正方形的特点找出边角关系,再利用解直角三角形的方法即可得以解决.
6.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为( )
A.①②④⑤⑥ B.①②④⑤ C.②④⑤ D.②④⑤⑥
【分析】①根据正方形的对角线平分对角的性质,得△PDF是等腰直角三角形,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=EC.
②先证明四边形PECF为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;
③根据P的任意性可以判断△APD不一定是等腰三角形;
④由②,PECF为矩形,则通过正方形的轴对称性,证明AP=EF;
⑤当AP最小时,EF最小,EF的最小值等于2;
⑥证明∠PFH+∠HPF=90°,则AP⊥EF.
【解答】解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,
∵GF∥BC,
∴∠DPF=∠DBC,
∵四边形ABCD是正方形
∴∠DBC=45°
∴∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC=DF,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=EC.
故①正确;
②∵PE⊥BC,PF⊥CD,∠BCD=90°,
∴四边形PECF为矩形,
∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,
故②正确;
③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,
∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,
故③错误.
④∵四边形PECF为矩形,
∴PC=EF,∠PFE=∠ECP,
由正方形为轴对称图形,
∴AP=PC,∠BAP=∠ECP,
∴AP=EF,∠PFE=∠BAP,
故④正确;
⑤由EF=PC=AP,
∴当AP最小时,EF最小,
则当AP⊥BD时,即AP=BD==2时,EF的最小值等于2,
故⑤正确;
⑥∵GF∥BC,
∴∠AGP=90°,
∴∠BAP+∠APG=90°,
∵∠APG=∠HPF,
∴∠PFH+∠HPF=90°,
∴AP⊥EF,
故⑥正确;
本题正确的有:①②④⑤⑥;
故选:A.
【点评】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.
7.如图,在△ABC中,∠ABC=90°,分别以△ABC的边向外作正方形,连接EC、BF,过B作BM⊥FG于M,交AC于N,下列结论:
①△ABF≌△AEC;②S四边形ABDE=2S△AEC;③S四边形AFMN=2S△ABF;④S正方形ABDE=S四边形AFMN,其中正确的是( )
A.①② B.①②③ C.① D.①②③④
【分析】利用全等三角形的判定和性质、平行线的性质、等高模型即可一一判断;
【解答】解:连接BE,AM.
∵AB=AE,AF=AC,∠EAB=∠CAF,
∴∠BAF=∠EAC,
∴△BAF≌△EAC(SAS),故①正确,
∵AE∥CD,
∴S△AWEC=S△ABE,
∵S正方形ABDE=2S△ABE,
∴S四边形ABDE=2S△AEC;故②正确;
∵BM⊥FG,AF⊥FG,
∴AF∥BM,
∴S矩形AFMN=2S△AFM=2S△AFB,故③正确,
∵∠ABC=∠ANB=90°,∠BAN=∠BAC,
∴△ABN∽△ACB,
∴AB2=AN AC,
∵AF=AC,
∴AB2=AN AF,
∴S正方形ABDE=S四边形AFMN,故④正确,
故选:D.
【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线的性质、等高模型、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
8.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是( )
A.(4,5) B.(5,4) C.(4,4) D.(5,3)
【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,
∴AB=5,
∴DO=4,
∴点C的坐标是:(5,4).
故选:B.
【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
9.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.
【解答】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是菱形,正确;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
∴EN=BC,GN=AD,
∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.
综上所述,①②③共3个正确.
故选:C.
【点评】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.
10.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论,其中正确结论的个数是( )
①FB⊥OC,OM=CM;
②△EOB≌△CMB;
③四边形EBFD是菱形;
④S△AOE:S△BCF=2:3.
A.1个 B.2个 C.3个 D.4个
【分析】①根据已知得出△OBF≌△CBF,可求得△OBF与△CBF关于直线BF对称,进而求得FB⊥OC,OM=CM;
②因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM.
③先证得∠ABO=∠OBF=30°,再证得OE=OF,进而证得OB⊥EF,因为BD、EF互相平分,即可证得四边形EBFD是菱形;
④可通过面积转化进行解答.
【解答】解:连接BD,
∵四边形ABCD是矩形,
∴AC=BD,AC、BD互相平分,
∵O为AC中点,
∴BD也过O点,
∴OB=OC,
∵∠COB=60°,OB=OC,
∴△OBC是等边三角形,
∴OB=BC=OC,∠OBC=60°,
在△OBF与△CBF中
,
∴△OBF≌△CBF(SSS),
∴△OBF与△CBF关于直线BF对称,
∴FB⊥OC,OM=CM;
∴①正确,
∵∠OBC=60°,
∴∠ABO=30°,
∵△OBF≌△CBF,
∴∠OBM=∠CBM=30°,
∴∠ABO=∠OBF,
∵AB∥CD,
∴∠OCF=∠OAE,
∵OA=OC,
易证△AOE≌△COF,
∴OE=OF,
∴OB⊥EF,
∴四边形EBFD是菱形,
∴③正确,
∵△EOB≌△FOB≌△FCB,
∴△EOB≌△CMB错误.
∴②错误,
易知△AOE≌△COF,
∴S△AOE=S△COF,
∵S△COF=2S△CMF,
∴S△AOE:S△BCM=2S△CMF:S△BCM=,
∵∠FCO=30°,
∴FM=,BM=CM,
∴,
∴S△AOE:S△BCM=2:3,
故④错误;
故选:B.
【点评】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.
11.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E.当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC
C.∠FCE=90° D.四边形AFCE是矩形
【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【解答】解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选:D.
【点评】此题主要考查了矩形的判定等腰三角形的判定,关键是掌握有一个角为直角的平行四边形是矩形.
12.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为( )
A.25° B.30° C.35° D.40°
【分析】根据直角三角形两锐角互余求出∠AFE,再根据翻折变换的性质求出∠BFG,然后根据直角三角形两锐角互余列式计算即可得解.
【解答】解:∵∠AEF=30°,
∴∠AFE=90°﹣∠AEF=90°﹣30°=60°,
由翻折的性质得,∠BFG=∠EFG,
∴∠BFG=(180°﹣∠AFE)=(180°﹣60°)=60°,
在Rt△BFG中,∠FGB=90°﹣∠BFG=90°﹣60°=30°.
故选:B.
【点评】本题考查了翻折变换的性质,直角三角形两锐角互余的性质,熟练掌握翻折前后的两个图形能够完全重合是解题的关键.
二.填空题(共8小题)
13.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO= .
【分析】首先利用勾股定理求出DE,再利用三角形的面积公式求出OA即可.
【解答】解:∵四边形ABCD是正方形,
∴AD=BC=2,∠DAE=90°,
∵AE=EB=1,
∴DE==,
∵AO⊥DE,
∴×DE×AO=×AE×AD,
∴AO=.
故答案为.
【点评】本题考查正方形的性质,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
14.如图:长方形ABCD中,AD=26,AB=12,点Q是BC的中点,点P在AD边上运动,当△BPQ是以QP为腰的等腰三角形时,AP的长为 6.5或8或18 .
【分析】分BP=QP和BQ=QP两种情况分别讨论,再结合勾股定理求解即可.
【解答】解:∵四边形ABCD为矩形,且AD=26,点Q是BC的中点,
∴BQ=13,
当BP=QP时,过P作PM⊥BQ,交BQ于点M,如图1,
则BM=MQ=6.5,且四边形ABMP为矩形,
∴AP=BM=6.5,
当QP=BQ时,以点Q为圆心,BQ为半径作圆,于AD交于R、S两点,如图2,
过Q作QN⊥RS,交RS于点N,则可知RN=SN,
在Rt△RNQ中,可求得RN=SN=5,
则AR=8,AS=18,
即R、S为满足条件的P点的位置,
∴AP=8或18,
综上可知,AP的长为6.5或8或18.
故答案为:6.5或8或18.
【点评】本题考查了等腰三角形的判定,矩形的性质,勾股定理的应用,难点在于要分情况讨论,作出图形更形象直观.
15.菱形ABCD中,∠A=60°,AB=6,点P是菱形内一点,若PB=PD=2,则AP的长是 4或2 .
【分析】分P与A在BD的同侧与异侧两种情况进行讨论.
【解答】解:当P与A在BD的异侧时:连接AP交BD于M,
∵AD=AB,DP=BP,
∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),
在直角△ABM中,∠BAM=30°,
∴AM=AB cos30°=3,BM=AB sin30°=3,
∴PM==,
∴AP=AM+PM=4;
当P与A在BD的同侧时:连接AP并延长AP交BD于点M
同理可得:AP=AM﹣PM=2;
综上所述,AP的长为4或2.
故答案为4或2.
【点评】本题考查菱形的性质,解直角三角形等知识,本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.
16.如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接BE,过A点作AF⊥AE交DP于点F,连接BF,若AE=2,正方形ABCD的面积为 10 .
【分析】如图,由正方形性质和已知就可以得出∠EAF=∠DAB=90°,AB=AD,可以得出∠1=∠2,由对顶角相等可以得出∠5=∠6,所以∠3=∠4,从而可以证明△AEB≌△AFD,可以求得AE=AF,再利用勾股定理就可以求出EF的值,过点A作AM⊥EF于M,由△AEF是等腰直角三角形,可以得出∠AME=90°,由已知可以证明△AMP≌△BEP,可以得出BE=AM=,最后由勾股定理求出结论.
【解答】解:∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,
∴AB=AD,∠BAD=∠EAF=∠BEF=90°,
∴∠1+∠FAB=∠2+∠FAB=90°,
∴∠1=∠2.
∵∠3+∠5=∠4+∠6,且∠5=∠6,
∴∠3=∠4.
在△AEB和△AFD中,
,
∴△AEB≌△AFD(ASA),
∴AE=AF=2,
∴△EAF为等腰直角三角形.
在Rt△EAF中,由勾股定理,得
EF==2.
过点A作AM⊥EF于M,连接BD,
∴AM=MF=EM=EF=,∠AME=∠BEF=90°,
∵点P是AB的中点,
∴AP=BP,
在△AMP和△BEP中,
,
∴△AMP≌△BEP(AAS),
∴BE=AM=DF=,
∴DE=EF+DF=2+=3,
在Rt△BED中,BD====2,
∴S正方形ABCD=BD2=×=10.
故答案为:10.
【点评】本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质的运用,勾股定理的运用.熟记各性质与三角形全等的判定方法是解题的关键,难点是作辅助线构造全等三角形.
17.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为 9 .
【分析】过O作OF⊥BC,过A作AM⊥OF,根据正方形的性质得出∠AOB=90°,OA=OB,求出∠BOF=∠OAM,根据AAS证△AOM≌△BOF,推出AM=OF,OM=FB,求出四边形ACFM为矩形,推出AM=CF,AC=MF=3,得出等腰三角形三角形OCF,根据勾股定理求出CF=OF=6,求出BF,即可求出答案.
【解答】解:过O作OF⊥BC于F,过A作AM⊥OF于M,
∵∠ACB=90°,
∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,
∴四边形ACFM是矩形,
∴AM=CF,AC=MF=3,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∵∠AMO=90°,
∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△OBF中,
∴△AOM≌△OBF(AAS),
∴AM=OF,OM=FB,
∴OF=CF,
∵∠CFO=90°,
∴△CFO是等腰直角三角形,
∵OC=6,由勾股定理得:CF=OF=6,
∴BF=OM=OF﹣FM=6﹣3=3,
∴BC=6+3=9.
故答案为:9.
【点评】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,有一定的难度.
18.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,连接DG.点E从点C运动到点D的过程中,DG的最小值为 .
【分析】首先证明∠CGB=90°,推出点G的运动轨迹是以BC为直径的⊙O,当O,G,D共线时,DG的值最小;
【解答】解:如图,
∵四边形ABCD是正方形,
∴BC=CD,∠BCE=∠CDF=90°,
∵CE=DF,
∴△BCE≌△CDF(SAS),
∴∠EBC=∠FCD,
∵∠FCD+∠BCG=90°,
∴∠CBE+∠BCG=90°,
∴∠CGB=90°,
∴点G的运动轨迹是以BC为直径的⊙O,
当O,G,D共线时,DG的值最小,最小值=﹣=,
故答案为.
【点评】本题考查正方形的性质、全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是确定出DG最小时点G的位置,也是本题的难点.
19.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AE,延长EF交边BC于点G,连结AG,CF,则下列结论:
①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=;
其中正确的结论有 ①②③④⑤ .
【分析】由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由==,可求出△FGC的面积,故此可对⑤做出判断.
【解答】解:解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL).
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2.
在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.
∵CG=6﹣x,CE=4,EG=x+2,
∴(6﹣x)2+42=(x+2)2,解得:x=3.
∴BG=GF=CG=3.
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
∵S△EGC=×3×4=6,S△AEF=S△ADE=×6×2=6,
∴S△EGC=S△AFE;
∴④正确,
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴==,
∵S△GCE=6,
∴S△CFG=×6=3.6,
∴⑤正确;
故答案为①②③④⑤.
【点评】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.
20.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于 50 .
【分析】将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,想办法证明∠APH=30°,利用勾股定理求出AB的平方即可解决问题.
【解答】解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.
∵四边形ABCD是菱形,
∴AB=BC,∵∠ABC=60°,
∴△ABC是等边三角形,
∵AM=AP,∠MAP=60°,
∴△AMP是等边三角形,
∵∠MAP=∠BAC,
∴∠MAB=∠PAC,
∴△MAB≌△PAC,
∴BM=PC=10,
∵PM2+PB2=100,BM2=100,
∴PM2+PB2=BM2,
∴∠MPB=90°,∵∠APM=60°,
∴∠APB=150°,∠APH=30°,
∴AH=PA=3,PH=3,BH=8+3,
∴AB2=AH2+BH2=100+48,
∴菱形ABCD的面积=2 △ABC的面积=2××AB2=50+72,
故答案为50+72.
【点评】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
三.解答题(共10小题)
21.如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.
(1)求证:四边形OBCE是平行四边形;
(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.
【分析】(1)根据矩形的性质得出OA=OB=OC=OD,再根据平行四边形的性质和菱形的判定得到四边形OCED为菱形,再根据菱形的性质和推平行四边形的判定出即可;
(2)过F作FM⊥BC于M,过O作ON⊥BC于N,根据平行线的判定得到ON∥FM,再根据三角形中位线定理得到ON=1,FM=,可得∠ACB=30°,在 Rt△ABC中,根据含30°的直角三角形的性质可得BC=2,CM=,进一步得到BM=BC﹣CM=,根据勾股定理可得BF的长.
【解答】(1)证明:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∵四边形OCED是平行四边形,
∴四边形OCED为菱形,
∴CE∥OB,CE=OB,
∴四边形OBCE为平行四边形;
(2)解:过F作FM⊥BC于M,过O作ON⊥BC于N,
∵FM⊥BC,ON⊥BC,
∴ON∥FM,
∵AO=OC,
∴ON=AB=1,
∵OF=FC,
∴FM=ON=,
∵∠AOB=60°,OA=OB,
∴∠OAB=60°,∠ACB=30°,
在 Rt△ABC中:
∵AB=2,∠ACB=30°,
∴BC=2,
∵∠ACB=30°,FM=,
∴CM=,
∴BM=BC﹣CM=,
∴BF==.
【点评】本题考查了矩形的性质,平行四边形的判定与性质,菱形的判定与性质的应用,注意:矩形的对角线互相平分且相等,有一组邻边相等的平行四边形是菱形.
22.“三等分一个角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的,在探索中,有人曾利用过如下的图形:其中,ABCD是长方形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠GFA,你能证明∠ECB=∠ACB吗?
【分析】由矩形的对边平行可得∠F=∠ECB,由外角等于和它不相邻的两个内角的和可得∠AGC=2∠F,那么∠ACF=2∠ECB,所以∠ECB=∠ACB.
【解答】证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠F=∠ECB,
∴∠ACG=∠AGC=∠GAF+∠F=2∠F
=2∠ECB,
∴∠ACB=∠ACG+∠ECB=3∠ECB,
∴∠ECB=∠ACB.
【点评】用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.
23.如图,在矩形ABCD中,AB=6,BC=8,动点P在边AD上以每秒2个单位的速度从A出发,沿AD向D运动,同时动点Q在边BD上以每秒5个单位的速度从D出发,沿DB向B运动,当其中有一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒.
(1)填空:当某一时刻t,使得t=1时,P、Q两点间的距离PQ= ;
(2)是否存在以P、D、Q中一点为圆心的圆恰好过另外两个点?若存在求出此时t的值;若不存在,请说明理由.
【分析】(1)根据矩形的性质得到∠BAD=90°,根据勾股定理得到BD=10,过Q作QE⊥AD于E,根据三角形的中位线的性质得到EQ=AB=3,PE=2,根据勾股定理即可得到结论;
(2)由题意得到AP=2t,DQ=5t,PD=8﹣2t,根据平行线分线段成比例定理得到QE=3t,根据勾股定理得到PQ=,当D是圆心时,PD=DQ,当P是圆心时,PD=PQ,当Q是圆心时,PQ=DQ,列方程即可得到结论.
【解答】解:(1)∵t=1,
∴AP=2,DQ=5,
∴PD=6,
∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AB=6,BC=8,
∴BD=10,
∴Q为BD的中点,
过Q作QE⊥AD于E,
∴QE∥AB,
∴AE=DE=4,
∴EQ=AB=3,PE=2,
∴PQ==;
故答案为:;
(2)存在,
理由:∵AP=2t,DQ=5t,
∴PD=8﹣2t,
由(1)知,QE∥AB,
∴=,
∴=,
∴QE=3t,
∴DE=4t,
∴PE=8﹣6t,
∴PQ=,
当D是圆心时,PD=DQ,
∴8﹣2t=5t,
解得:t=;
当P是圆心时,PD=PQ,
∴8﹣2t=,
解得:t=,或t=0(舍去);
当Q是圆心时,PQ=DQ,
∴5t=,
解得:t=或t=4(舍去),
综上所述:t的值为s或s或s.
【点评】本题考查了矩形的性质,勾股定理,平行线分线段成比例定理,解方程,熟练掌握矩形的性质是解题的关键.
24.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若AE=10,BF=24,CE=7,求四边形ABCD的面积.
【分析】(1)先证明四边形ABEF是平行四边形,再证明邻边相等即可证明.
(2)作FG⊥BC于G,根据S菱形ABEF= AE BF=BE FG,先求出FG即可解决问题.
【解答】(1)证明:∵四边形ABCD是平行四边形
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF.
∴四边形ABEF是菱形.
(2)解:作FG⊥BC于G,
∵四边形ABEF是菱形,AE=10,BF=24,
∴AE⊥BF,OE=AE=5,OB=BF=12,
∴BE=,
∵S菱形ABEF= AE BF=BE FG,
∴GF=,
∴S平行四边形ABCD=BC FG=
【点评】本题考查平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是利用面积法求出高FG,记住菱形的三种判定方法,属于中考常考题型.
25.如图,A,B,C,D为矩形的四个顶点,AB=4cm,AD=2cm,动点P、Q分别从点A,C同时出发,都以1cm/s的速度运动,其中点P由A运动到B停止,点Q由点C运动到点D停止.
(1)求四边形PBCQ的面积;
(2)P、Q两点从出发开始到几秒时,点P、Q、D组成的三角形是等腰三角形?
【分析】(1)设运动时间为t,则AP=t,CQ=t,根据矩形的面积公式即可得到结论;
(2)设P、Q两点从出发开始到t秒时,点P、Q、D组成的三角形是等腰三角形,求得CQ=t,DQ=4﹣t,①当PQ=DQ=4﹣t时,②当PQ=PD时,③当DQ=PD时,根据等腰三角形的性质列方程即可得到结论.
【解答】解:(1)设运动时间为t,
则AP=t,CQ=t,
∵四边形ABCD是矩形,
∴CD=AB=4cm,BC=AD=2cm,∠B=∠C=90°,
∴BP=4﹣t,
∴四边形PBCQ的面积=(PB+CQ) BC=4×2=4(cm)2;
(2)设P、Q两点从出发开始到t秒时,点P、Q、D组成的三角形是等腰三角形,
∵CQ=t,∴DQ=4﹣t,
①当PQ=DQ=4﹣t时,
如图1,过P作PH⊥DQ于H,
则PH=AD=2,DH=AP=t,
∵CQ=t,
∴HQ=4﹣2t,
∵PH2+HQ2=PQ2,
∴22+(4﹣2t)2=(4﹣t)2,
解得:t=2,t=,
②当PQ=PD时,
如图2,过P作PH⊥DQ于H,
则PH=AD=2,DH=AP=HQ=t,
∵CQ=t,
∴HQ=4﹣2t,
∴4﹣2t=t,
∴t=,
③当DQ=PD时,
∴DQ=4﹣t,
∴PD=DQ=4﹣t,
∵AP2+AD2=PD2,
∴t2+22=(4﹣t)2,
∴t=,
综上所述,当t=2秒或t=秒或t=秒或t=秒时,点P、Q、D组成的三角形是等腰三角形.
【点评】本题考查了矩形的性质,等腰三角形的判定,勾股定理,分类思想的运用是解题的关键.
26.如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.
(1)求证:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.
【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;
(2)根据平行四边形的判定和菱形的判定解答即可.
【解答】证明:(1)∵平行四边形ABCD,
∴AD=BC,AD∥BC,
∴∠DAC=∠BCF,
∵DE∥AC,
∴∠DAC=∠EDA,
∴∠FCB=∠EDA,
在△ADE与△BCF中
,
∴△ADE≌△BCF(SAS);
(2)∵DE∥AC,且DE=AC,
∴四边形EFCD是平行四边形,
∴DC=EF,且DC∥EF,
又∵AB=CD,AB∥CD,
∴AB=EF,AB∥EF,
∴四边形ABFE是平行四边形,
∵△ADE≌△BCF,
∴∠AED=∠BFC,
∵∠BAF+∠AED=180°,
∴∠BAF+∠BFC=180°,
又∠BFA+∠BFC=180°,
∴∠BAF=∠BFA,
∴BA=BF,
∴四边形ABFE为菱形.
【点评】此题考查菱形的判定,关键是根据平行四边形的判定、菱形的判定和全等三角形的判定解答.
27.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.
【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG= S正方形ABCD;
【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);
【探究】如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.
【分析】【感知】如图①,根据正方形的性质和全等三角形的性质即可得到结论;
【拓展】如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到mb=AG a,于是得到结论;
【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,根据平行四边形的面积公式得到=,根据三角形的面积公式列方程即可得到结论.
【解答】解:【感知】如图①,
∵四边形ABCD是正方形,
∴∠OAG=∠OBE=45°,OA=OB,
在△AOG与△BOE中,,
∴△AOG≌△BOE,
∴S四边形AEOG=S△AOB=S正方形ABCD;
故答案为:;
【拓展】如图②,过O作ON⊥AD于N,OM⊥AB于M,
∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,
∴S△AOB=S四边形AEOG,
∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,
∴S△BOE=S△AOG,
∵S△BOE=BE OM=mb=mb,S△AOG=AG ON=AG a=AG a,
∴mb=AG a,
∴AG=;
【探究】如图③,过O作KL⊥AB,PQ⊥AD,
则KL=2OK,PQ=2OQ,
∵S平行四边形ABCD=AB KL=AD PQ,
∴3×2OK=5×2OQ,
∴=,
∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,
∴S△AOB=S四边形AEOG,
∴S△BOE=S△AOG,
∵S△BOE=BE OK=×1×OK,S△AOG=AG OQ,
∴×1×OK=AG OQ,∴=AG=,
∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.
【点评】本题考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S△BOE=S△AOG是解决问题的关键.
28.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.
(1)如图2,取AB的中点H,连接HE,求证:AE=EF.
(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.
【分析】(1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
(2)成立,延长BA到M,使AM=CE,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
【解答】(1)证明:取AB的中点H,连接EH;如图1所示
∵四边形ABCD是正方形,AE⊥EF;
∴∠1+∠AEB=90°,∠2+∠AEB=90°
∴∠1=∠2,
∵BH=BE,∠BHE=45°,且∠FCG=45°,
∴∠AHE=∠ECF=135°,AH=CE,
在△AHE和△ECF中,
,
∴△AHE≌△ECF(ASA),
∴AE=EF;
(2)解:AE=EF成立,
理由如下:如图2,延长BA到M,使AM=CE,
∵∠AEF=90°,
∴∠FEG+∠AEB=90°.
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEG,
∴∠MAE=∠CEF.
∵AB=BC,
∴AB+AM=BC+CE,
即BM=BE.
∴∠M=45°,
∴∠M=∠FCE.
在△AME与△ECF中,
,
∴△AME≌△ECF(ASA),
∴AE=EF.
【点评】本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
29.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)分别求出(2)中菱形AQCP的周长和面积.
【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.
【解答】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,
∴BC=AD=16cm,AB=CD=8cm,
由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=16﹣t,得t=8,
故当t=8s时,四边形ABQP为矩形;
(2)∵AP=CQ,AP∥CQ,
∴四边形AQCP为平行四边形,
∴当AQ=CQ时,四边形AQCP为菱形
即=16﹣t时,四边形AQCP为菱形,解得t=6,
故当t=6s时,四边形AQCP为菱形;
(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,
则周长为4×10cm=40cm;
面积为10cm×8cm=80cm2.
【点评】本题考查了菱形、矩形的判定与性质.解决此题注意结合方程的思想解题.
30.如图,点O为平面直角坐标系的原点,在长方形OABC中,OC∥AB,OA∥BC,两边OC、OA分别在x轴和y轴上,且点B(a,b)满足:+(2b+6)2=0.
(1)求点B的坐标;
(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:3两部分,求点P的坐标;
(3)如图2,M为线段OC一点,且∠ABM=∠AMB,N是x轴负半轴上一动点,∠MAN的平分线AD交BM的延长线于点D,在点N运动的过程中,试判断∠ANM与∠D的数量关系,并说明理由.
【分析】(1)利用非负数的性质即可解决问题;
(2)分两种情形分别讨论求解即可;
(3)结论:∠ANM=2∠D.作ME∥AD交AB于E.延长BA到F.利用平行线的性质,角平分线的定义即可解决问题;
【解答】解:(1)由题意:4﹣a=0,2b+6=0,
∴a=4,b=﹣3,
∴B(4,﹣3).
(2)①当点P在OC上时,由题意:S△BCP:S四边形OABC=1:4,
∴ CP 3=×3×4,
∴PC=2.
∴OP=4﹣2=2,
∴P(2,0).
②当点P中OA上时,S△ABP=S四边形OABC,
∴ PA 4=×3×4
∴PA=,
∴OP=3﹣=,
∴P(0,﹣),
综上所述,满足条件的点P坐标为(2,0)或(0,﹣).
(3)结论:∠ANM=2∠D.
理由:作ME∥AD交AB于E.延长BA到F.
∵ME∥AD,
∴∠1=∠D,∠2=∠3,
∵AD平分∠MAN,
∴∠MAN=2∠3,
∵OC∥AB,
∴∠ABM=∠CMB,
∵∠AMB=∠CMB,
∴∠AMC=2∠AMB,
∵OC∥AB,
∴∠FAM=∠AMC=2∠AMB,
∴∠ANM=2∠AMB﹣2∠3
=2∠AMB﹣2∠2
=2(∠AMB﹣∠2)
=2∠1
=2∠D.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)