中小学教育资源及组卷应用平台
6.1.2 反比例函数 随堂练习
1、已知y与x成反比例,且x=2时,y=3,则y关于x的函数表达式是( C )
A. B. C. D.
2、已知y是关于x的反比例函数,当x=时,y=,下列各组值也满足这个反比例函数的是( D )
A.x=,y= B.x=-1,y=-2 C.x=-2,y=-1 D.x=2,y=-1
3、已知点M(-2,4)在双曲线上,则下列各点一定在该双曲线上的是( B )
A.(-2,-4) B.(4,-2) C.(2,4) D.(4,2)
4、已知近视眼镜的度数y(度)是镜片焦距x(cm)的反比例函数,若500度的近视眼镜镜片的焦距是20 cm,则1 000 度的近视眼镜镜片的焦距是 10 cm.
5、已知y与x+2成反比例,当x=4时,y=2,当x=0时,y= 6 .
6、已知y是关于x的反比例函数,当x=-2时,y=-3.
(1)求该反比例函数的表达式;
(2)判断x=,y=是否满足该反比例函数.
解析 (1)设这个反比例函数的表达式为(k≠0),∵当x=-2时,y=-3,∴-3=,解得k=6,
∴该反比例函数的表达式为.
(2)当x=时,y=,
∴x=,y=满足该反比例函数.
7、已知y+1与x成反比例函数关系,且x=4时,y=2.
(1)求y与x之间的函数关系式;
(2)当x=-2时,求y的值.
解析 (1)设y+1=(k≠0),
把x=4,y=2代入,得2+1=,∴k=12,
∴y+1=,∴y=-1.
(2)把x=-2代入y=-1,得y=-6-1=-7.
8、王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同.设王叔叔每月偿还贷款本金y万元,x个月还清,且y是x的反比例函数,其图象如图所示.
(1)求y与x的函数关系式;
(2)求王叔叔购买的商品房的总价;
(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?
解析:(1)解:设,
由图象可知:在函数图象上,
∴,
∴;
(2)解:∵,
∴王叔叔贷款总额为:万元,
∴房子总价为:万元;
(3)解:万,由题意得:
当时,即:,
解得,
∴至少需要300个月还清.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
6.1.2 反比例函数 随堂练习
1、已知y与x成反比例,且x=2时,y=3,则y关于x的函数表达式是( )
A. B. C. D.
2、已知y是关于x的反比例函数,当x=时,y=,下列各组值也满足这个反比例函数的是( )
A.x=,y= B.x=-1,y=-2 C.x=-2,y=-1 D.x=2,y=-1
3、已知点M(-2,4)在双曲线上,则下列各点一定在该双曲线上的是( )
A.(-2,-4) B.(4,-2) C.(2,4) D.(4,2)
4、已知近视眼镜的度数y(度)是镜片焦距x(cm)的反比例函数,若500度的近视眼镜镜片的焦距是20 cm,则1 000 度的近视眼镜镜片的焦距是 cm.
5、已知y与x+2成反比例,当x=4时,y=2,当x=0时,y= .
6、已知y是关于x的反比例函数,当x=-2时,y=-3.
(1)求该反比例函数的表达式;
(2)判断x=,y=是否满足该反比例函数.
7、已知y+1与x成反比例函数关系,且x=4时,y=2.
(1)求y与x之间的函数关系式;
(2)当x=-2时,求y的值.
8、王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同.设王叔叔每月偿还贷款本金y万元,x个月还清,且y是x的反比例函数,其图象如图所示.
(1)求y与x的函数关系式;
(2)求王叔叔购买的商品房的总价;
(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)