第2章简单事件的概率测试题

文档属性

名称 第2章简单事件的概率测试题
格式 zip
文件大小 423.4KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2014-09-17 20:02:18

文档简介

第2章《简单事件的概率》基础卷
班级______ 姓名_______
一、选择题(每题3分,共30分)
1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(  )
  A. 频率就是概率 B. 频率与试验次数无关
  C. 概率是随机的,与频率无关
  D. 随着试验次数的增加,频率一般会越来越接近概率
2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是(  )21cnjy.com
A. B. C. D. 21·cn·jy·com
3.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是( )21·世纪*教育网
A. B. C. D.
4.有两个事件,事件A:367人中至少有两人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( )www-2-1-cnjy-com
A.事件A、B都是随机事件 B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件
D.事件A是必然事件,事件B是随机事件
5.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于(  )2-1-c-n-j-y
  A.1 B. 2 C. 3 D. 4
6.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地阴影部分的概率是(  )
A. B. C. D.
7. 在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形是中心对称图形的概率是( )【出处:21教育名师】
A. B. C. D.1
8.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为、乙立方体朝上一面朝上的数字为,这样就确定点P的一个坐标(),那么点P落在双曲线上的概率为( )
A. B. C. D.
9.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是(  )
 
A.
B.
C.
D.
10.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )【版权所有:21教育】
A. B. C. D.
二、填空题(每题4分,共24分)
11.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 21*cnjy*com
12.从﹣1,0,,π,3中随机任取一数,取到无理数的概率是  
13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为______.
14.任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于  .
15.“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .
16.甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标, 点A落在第三象限的概率是  
三、简答题(共66分)
17、(本题6分)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A为 “向上一面的数字是2或3的整数倍”,记事件B为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=+P(B)”是否成立,并说明理由.
18、(本题8分)一只不透明的袋子内装有除颜色不同外没有任何区别的5个红球、1个黑球、4个白球,从中任意摸出1个球.
(1)摸出红球的概率是多少?
(2)摸出的球不是白球的概率是多少?
19、(本题8分)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.21世纪教育网版权所有
20、(本题10分)
有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?
21.(本题10分)在一个口袋中有4个完全相同的小球,把它们分别标号l、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.  21*cnjy*com
①若小明摸出的球不放回,求小明获胜的概率.
②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
22、(本题12分)
经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:2·1·c·n·j·y
(1)求三辆车全部同向而行的概率;
(2)求至少有两辆车向左转的概率;
(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为,向左转和直行的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿
灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【来源:21cnj*y.co*m】
23、(本题12分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.21教育名师原创作品
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是  ;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).
参考答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
D
D
A
A
B
C
C
B
二、填空题
三、简答题
17.解:不成立
∵ P(A)==,
又∵P(B) ==,
而+=≠.
∴ 等式不成立.
18. (1)摸出红球的概率是
(2)摸出红球的概率是
19. 解:(1)m=50﹣6﹣25﹣3﹣2=14;
(2)记6~8小时的3名学生为,8~10小时的两名学生为,
P(至少1人时间在8~10小时)=.
20. 解:选择A转盘.
画树状图得:
∵共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,
∴P(A大于B)=,P(A小于B)=,
∴选择A转盘.
(2)由题意知(x,y)除(1)中的情形外,还有(1,1)(2,2)(3,3)(4,4)共16种情况,其中x>y有6种∴小明获胜的概率P(x>y)=<,∴游戏规则不公平.21教育网
22. 解:(1)分别用A,B,C表示向左转、直行,向右转;
根据题意,画出树形图:
∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,
∴P(三车全部同向而行)=;
(3)∵汽车向右转、向左转、直行的概率分别为,
∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:
左转绿灯亮时间为90×=27(秒),直行绿灯亮时间为90×=27(秒),右转绿灯亮的时间为90×=36(秒).www.21-cn-jy.com
23. (1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,【来源:21·世纪·教育·网】
故P(所画三角形是等腰三角形)=;
(2)用“树状图”或利用表格列出所有可能的结果:
∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,
∴所画的四边形是平行四边形的概率P==.
第2章《简单事件的概率》提高卷
班级______ 姓名_______
一、选择题(每题3分,共30分)
1.下列事件是必然事件的是(  )
抛掷一枚硬币100次,有50次正面朝上
B. 面积相等的两个三角形全等
C. a是实数,|a|>0
D. 方程x2﹣2x﹣1=0必有实数根
2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(  )
 
A.
B.
C.
D.
3.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是(  )
  A. B. C. D.

第3题 第4题 第6题
4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )21cnjy.com
 
A.
B.
C.
D.
5.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为(  )21·cn·jy·com
A. B. C. D.
6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
A. B. C. D.
7.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是( )
A. B. C. D.
8.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是(???)
A. 摸出的三个球中至少有一个球是黑球
B. 摸出的三个球中至少有一个球是白球
C. 摸出的三个球中至少有两个球是黑球
D. 摸出的三个球中至少有两个球是白球
9.一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是( )【来源:21·世纪·教育·网】
A. B. C. D.
10.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( )  21*cnjy*com
A. 落在菱形内 B. 落在圆内
C. 落在正六边形内 D. 一样大
二、填空题(每题4分,共24分)
11.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐一辆车的概率为  .
12.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是  .
13.若正整数使得在计算的过程中,各数位均不产生进位现象,则称 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.
14.有七张正面分别标有数字,,,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为,则使关于 的一元二次方程有两个不相等的实数根,且以为自变量的二次函数的图象不经过点(1,O)的概率是________.
15.如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是 . 21世纪教育网版权所有
16.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为,再由乙猜甲刚才所选的数字,记为。若、满足,则称甲、乙两人“心有灵犀”。则甲、乙两人“心有灵犀”的概率是 .
三、简答题(共66分)
17、(本题6分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
18、(本题8分)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.【来源:21cnj*y.co*m】
(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;
(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.
19、(本题8分)
在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).2-1-c-n-j-y
(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;
(2)求点(x,y)在函数y=﹣x+5图象上的概率.
20、(本题10分)某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是,你赞成他的观点吗?请用列表法或画树形图法分析说明.【出处:21教育名师】
21.(本题10分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.【版权所有:21教育】
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
22、(本题12分)学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:21教育名师原创作品
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.21*cnjy*com
23、(本题12分)在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.
(1)从中任取一球,求抽取的数字为正数的概率;
(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;
(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.
参考答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
D
C
A
C
A
B
A
A
A
B
二、填空题
11. 12. 13. 14. 15. 16. 21教育网
三、简答题
17. (1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:www.21-cn-jy.com
由上图可知,上述试验共有8种等可能结果.
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.2·1·c·n·j·y
∴P(一次打开锁)=.
18. 解:(1)画树状图得:
则共有12种等可能的结果;
19. (1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;
20. 不赞成小蒙同学的观点.
记七、八年级两名同学为A,B,九年级两名同学为C,D.
画树形图分析如下:
由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为21·世纪*教育网
∴(元)
∵40元>30元,
∴选择转转盘对顾客更合算.
22. 解:(1)25×2=50人;
50﹣25﹣15=10人;
如图所示条形图,
圆心角度数=×360°=108°;
(2)估计该年级步行人数=600×20%=120人;
(3)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢步行”的学生表示为D,1名“喜欢骑车”的学生表示为E,www-2-1-cnjy-com
则有AB、AC、BC、AD、BD、CD、AE、BE、CE、DE10种等可能的情况,
2人都是“喜欢乘车”的学生的概率P=.
23. 解:(1)根据题意得:抽取的数字为正数的情况有1个,
则P=;
(2)方程ax2﹣2ax+a+3=0,
△=4a2﹣4a(a+3)=﹣12a≥0,即a≤0,
则方程ax2﹣2ax+a+3=0有实数根的概率为;
(3)列表如下:
﹣3
﹣1
0
2
﹣3
﹣﹣﹣
(﹣1,﹣3)
(0,﹣3)
(2,﹣3)
﹣1
(﹣3,﹣1)
﹣﹣﹣
(0,﹣1)
(2,﹣1)
0
(﹣3,0)
(﹣1,0)
﹣﹣﹣
(2,0)
2
(﹣3,2)
(﹣1,2)
(0,2)
﹣﹣﹣
所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,
则P=.