第1章 有理数单元检测卷(含解析)

文档属性

名称 第1章 有理数单元检测卷(含解析)
格式 doc
文件大小 302.0KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-07-03 07:36:27

图片预览

文档简介

中小学教育资源及组卷应用平台
浙教版七年级上册2023年第1章《有理数》单元检测卷
一.选择题(共12小题,满分36分,每小题3分)
1.下列各数中,负数是(  )
A.﹣1 B.0 C.2 D.2023
2.的相反数是(  )
A.2 B. C.﹣2 D.
3.下列数中,是正整数的是(  )
A.﹣1 B.0 C.1 D.
4.下列关于数轴的图示,画法正确的是(  )
A. B.
C. D.
5.下面的说法中,正确的是(  )
A.正有理数和负有理数统称有理数 B.整数和小数统称有理数
C.整数和分数统称有理数 D.整数、零和分数统称有理数
6.在1,0,﹣1,﹣四个数中,最小的数是(  )
A.2 B.0 C.﹣1 D.﹣
7.南、北为两个相反方向,如果+5m表示一个物体向北移动5m,那么﹣3m表示一个物体(  )
A.向北移动3m B.向南移动3m C.向北移动8m D.向南运动8m
8.下列有理数的大小关系正确的是(  )
A. B.|+6|>|﹣6|
C.﹣|﹣3|>0 D.
9.若|a|=2,则a=(  )
A.﹣2 B. C.2 D.±2
10.点A在数轴上的位置如图所示,将点A向左移动3个单位长度得到点B,则点B表示的数是(  )
A.4 B.3 C.﹣3 D.﹣2
11.在数轴上表示负数a的点与原点O的距离是1,则负数a等于(  )
A.1 B.﹣1 C.±1 D.0
12.若|x﹣3|+|y﹣2|=0,那么x﹣y的值是(  )
A.5 B.﹣5 C.1 D.﹣1
二.填空题(共6小题,满分24分,每小题4分)
13.如果规定向东走20米记作+20米,那么向西走40米记作    米.
14.如果一个数与﹣2023互为相反数,那么这个数是    .
15.比较大小:﹣4.7    ﹣4(填“>”、“<”或“=”).
16.﹣|﹣0.4|=   .
17.在数轴上距原点7个单位的点表示的数是    .
18.a,b是有理数,它们在数轴上对应点的位置如图所示.把a,﹣a,b,﹣b按照从小到大的顺序排列应是 (用“<”号连接).
三.解答题(共5小题,满分40分,每小题8分)
19.(8分)化简:
(1)﹣(﹣68); (2)﹣(+0.75); (3); (4)﹣[+(﹣3.6)].
20.(6分)把下列各数填在相应的大括号内:
+8,0.35,0,﹣1.04,200%,π,,﹣,﹣2020.
整数集合{   };
正数集合{   };
正分数集合{   }.
21.(8分)若|a|=2,|b|=1,且a<b,求a的值.
22.(8分)在数轴上表示下列各数:3,0,,﹣2.5,﹣4.并将它们按从小到大的顺序用“<”排列起来.
23.(10分)如图,在数轴上标出相关的点,并解答问题:
(1)在数轴上表示下列各数:5,3.5,﹣2,﹣1;
(2)在数轴上标出表示﹣1的点A,写出将点A沿数轴平移4个单位长度后得到的数.
浙教版七年级上册2023年第1章《有理数》单元检测卷
参考答案与试题解析
一.选择题(共12小题,满分36分,每小题3分)
1.下列各数中,负数是(  )
A.﹣1 B.0 C.2 D.2023
【分析】根据负数的定义进行判断即可.
【解答】解:﹣1是负数,
则A符合题意;
0既不是正数,也不是负数,
则B不符合题意;
2和2023均为正数,
则C,D均不符合题意;
故选:A.
2.的相反数是(  )
A.2 B. C.﹣2 D.
【分析】直接根据相反数定义解答即可.
【解答】解:的相反数是.
故选:B.
3.下列数中,是正整数的是(  )
A.﹣1 B.0 C.1 D.
【分析】根据正整数的定义进行逐一判断即可.
【解答】解:∵这四个数中,只有1是正整数,
∴只有选项C符合题意,
故选:C.
4.下列关于数轴的图示,画法正确的是(  )
A. B.
C. D.
【分析】根据数轴的定义对各选项分析判断利用排除法求解.
【解答】解:A、单位长度不统一,故此选项不符合题意;
B、缺少正方向,故此选项不符合题意;
C、没有原点,故此选项不符合题意;
D、规定了原点,单位长度,正方向的直线叫做数轴,故此选项符合题意.
故选:D.
5.下面的说法中,正确的是(  )
A.正有理数和负有理数统称有理数
B.整数和小数统称有理数
C.整数和分数统称有理数
D.整数、零和分数统称有理数
【分析】根据有理数的分类进行判断即可.
【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;
B.无限不循环小数是无理数,故不符合题意;
C.整数和分数统称为有理数,故符合题意;
D.整数包括零,故不符合题意.
故选:C.
6.在1,0,﹣1,﹣四个数中,最小的数是(  )
A.2 B.0 C.﹣1 D.﹣
【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.
【解答】解:因为﹣1<﹣<0<2,
所以最小的数是﹣1,
故选:C.
7.南、北为两个相反方向,如果+5m表示一个物体向北移动5m,那么﹣3m表示一个物体(  )
A.向北移动3m B.向南移动3m C.向北移动8m D.向南运动8m
【分析】根据正数和负数的意义解答即可.
【解答】解:南、北为两个相反方向,如果+5m表示一个物体向北移动5m,
那么﹣3m表示一个物体向南移动3m.
故选:B.
8.下列有理数的大小关系正确的是(  )
A. B.|+6|>|﹣6|
C.﹣|﹣3|>0 D.
【分析】先分别化简各选项需要化简的各数,再根据正数大于0,负数小于0,两个负数绝对值大的反而小进行大小比较即可.
【解答】解:,,
∴,故A不符合题意;
|+6|=6,|﹣6|=6,
∴|+6|=|﹣6|,故B不符合题意;
﹣|﹣3|=﹣3,
∴﹣|﹣3|<0,故C不符合题意;
,|﹣1.25|=1.25,而1.5>1.25,
∴,故D符合题意;
故选:D.
9.若|a|=2,则a=(  )
A.﹣2 B. C.2 D.±2
【分析】根据绝对值的性质即可求得答案.
【解答】解:∵|2|=2,|﹣2|=2,|a|=2,
∴a=±2,
故选:D.
10.点A在数轴上的位置如图所示,将点A向左移动3个单位长度得到点B,则点B表示的数是(  )
A.4 B.3 C.﹣3 D.﹣2
【分析】根据数轴上点平移规律:左减右加,直接求取即可得到答案.
【解答】解:由题意可得,
∵点A向左移动3个单位长度得到点B,
∴点B代表的数字是:1﹣3=﹣2,
故选:D.
11.在数轴上表示负数a的点与原点O的距离是1,则负数a等于(  )
A.1 B.﹣1 C.±1 D.0
【分析】设数轴上与原点的距离等于1的点所表示的数是a,则|a|=1,由a为负数,即可得出结论.
【解答】解:∵数轴上点a与原点的距离等于1,
则|a|=1,
∴a=±1,
∵a是负数,
∴a=﹣1,
故选:B.
12.若|x﹣3|+|y﹣2|=0,那么x﹣y的值是(  )
A.5 B.﹣5 C.1 D.﹣1
【分析】根据绝对值的定义求出x、y的值,再代入计算即可.
【解答】解:∵|x﹣3|+|y﹣2|=0,
∴x﹣3=0,y﹣2=0,
解得x=3,y=2,
∴x﹣y=3﹣2=1,
故选:C.
二.填空题(共6小题,满分24分,每小题4分)
13.如果规定向东走20米记作+20米,那么向西走40米记作  ﹣40 米.
【分析】根据正负数的定义可得结论.
【解答】解:向东走20米记作+20米,
根据具有相反意义的量,一个记为正,另一个记为负,
所以向西走40米记作﹣40米,
故答案为:﹣40.
14.如果一个数与﹣2023互为相反数,那么这个数是  2023 .
【分析】直接利用相反数的定义得出答案.
【解答】解:∵一个数与﹣2023互为相反数,
∴这个数是2023,
故答案是:2023.
15.比较大小:﹣4.7  < ﹣4(填“>”、“<”或“=”).
【分析】根据负数大小比较,比较它们的绝对值,绝对值大的反而小即可得到答案;
【解答】解:∵|﹣4.7|=4.7,|﹣4|=4,4.7>4,
∴﹣4.7<﹣4,
故答案为:<.
16.﹣|﹣0.4|= ﹣0.4 .
【分析】根据绝对值的意义解答即可.
【解答】解:﹣|﹣0.4|=﹣0.4,
故答案为:﹣0.4.
17.在数轴上距原点7个单位的点表示的数是  ±7 .
【分析】根据数轴上两点间的距离公式进行计算即可.
【解答】解:设该点表示的数为:x,由数轴上两点间的距离公式可得:
|x﹣0|=7,即:|x|=7,解得x=±7.
故答案为:±7.
18.a,b是有理数,它们在数轴上对应点的位置如图所示.把a,﹣a,b,﹣b按照从小到大的顺序排列应是  ﹣a<b<﹣b<a (用“<”号连接).
【分析】观察数轴得:b<0<a,且|b|<|a|,即可求解.
【解答】解:观察数轴得:b<0<a,且|b|<|a|,
∴﹣a<b<﹣b<a.
故答案为:﹣a<b<﹣b<a.
三.解答题(共5小题,满分40分,每小题8分)
19.(8分)化简:
(1)﹣(﹣68);
(2)﹣(+0.75);
(3);
(4)﹣[+(﹣3.6)].
【分析】(1)先去括号,然后根据负号的个数为偶数个,即可化简求值;
(2)先去括号,然后根据负号的个数为奇数个,即可化简求值;
(3)先去括号,然后根据负号的个数为偶数个,即可化简求值;
(4)先去括号,然后根据负号的个数为偶数个,即可化简求值.
【解答】解:(1)﹣(﹣68)=68;
(2)﹣(+0.75)=﹣0.75;
(3);
(4)﹣[+(﹣3.6)]=3.6.
20.(6分)把下列各数填在相应的大括号内:
+8,0.35,0,﹣1.04,200%,π,,﹣,﹣2020.
整数集合{ +8,0,200%,﹣2020 };
正数集合{ +8,0.35,200%,π, };
正分数集合{ 0.35, }.
【分析】根据有理数的概念与分类解决此题即可.
【解答】解:整数集合{+8,0,200%,﹣2020};
正数集合{+8,0.35,200%,π,};
正分数集合{0.35,}.
故答案为:+8,0,200%,﹣2020;+8,0.35,200%,π,;0.35,.
21.(8分)若|a|=2,|b|=1,且a<b,求a的值.
【分析】根据绝对值的性质可得a=±2,b=±1,再根据条件确定a、b的值.
【解答】解:∵|a|=2,|b|=1,
∴a=±2,b=±1,
当a=﹣2时,b=1,a<b,
当a=﹣2时,b=﹣1,a<b,
当a=2时,a>b,不合题意,
∴a=﹣2.
22.(8分)在数轴上表示下列各数:3,0,,﹣2.5,﹣4.并将它们按从小到大的顺序用“<”排列起来.
【分析】将各数在数轴上表示出来,然后根据数轴右边的数大于左边的数进行大小排列即可.
【解答】解:将各数在数轴上表示如图所示:
那么﹣4<﹣2.5<0<<3.
23.(10分)如图,在数轴上标出相关的点,并解答问题:
(1)在数轴上表示下列各数:5,3.5,﹣2,﹣1;
(2)在数轴上标出表示﹣1的点A,写出将点A沿数轴平移4个单位长度后得到的数.
【分析】(1)在数轴上表示各数即可求解;
(2)先在数轴上标出表示﹣1的点A,再写出将点A平移4个单位长度后得到的数是3或﹣5即可求解.
【解答】解:(1)如图所示,
(2)如图所示:将点A平移4个单位长度后得到的数是3或﹣5.