专题2.4 概率的简单应用- 2023-2024学年九年级上册数学同步课堂+培优题库(浙教版)(解析卷)

文档属性

名称 专题2.4 概率的简单应用- 2023-2024学年九年级上册数学同步课堂+培优题库(浙教版)(解析卷)
格式 zip
文件大小 4.3MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-07-07 10:56:46

文档简介

中小学教育资源及组卷应用平台
专题2.4 概率的简单应用
模块1:学习目标
1、体验概率计算在生产、生活和科学研究中的广泛应用;
2、能用初步的概率知识解决如中奖预测、人寿保险等方面的问题。
模块2:知识梳理
人们在生活、生产和科学研究中,经常需要知道一些事件发生的可能性有多大。例如:买彩票时希望知道中奖的概率有多大;出门旅游时希望知道天气是否晴朗等。概率与人们的生活密切相关,能帮助我们对许多事件作出判断和决策。因此在生活、生产和科研等各个领域都有着广泛的应用。
模块3:核心考点与典例
考点1、游戏的公平性
例1.(2022·湖南湘西·九年级期末)学完《概率初步》后,小诚和小明两个好朋友利用课外活动时间自制A、B两组卡片共5张,A组三张分别写有数字2,4,6,B组两张分别写有3,5.它们除了数字外没有任何区别.他俩提出了如下两个问题请你解答:
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果;
(3)如果他俩还制定这样一个游戏规则:若选出的两数之积为3的倍数,则小诚获胜;否则小明获胜.请问这样的游戏规则对小诚、小明双方公平吗?请说明理由.
【答案】(1)(2)见详解(3)因为小诚获胜的概率大于小明获胜的概率,所以不公平
【分析】(1)用抽取张数除以A组总数即可求出概率;(2)通过树状图将每种情况列出来即可;
(3)根据(2)所列出来所有情况,分别用乘积为3的倍数的总数与乘积不为3的倍数的总数除以所有情况,若概率不相等则不公平,反之则公平.
(1)∵抽取1张,且A组共有3张∴故抽到数字2的概率为.
(2)由题意画出树状图如下:
∴共有(2,3)(2,5)(4,3)(4,5)(6,3)(6,5)6种等可能的结果.
(3)∵ 乘积为3的倍数有(2,3)、(6,3)、(4,3)、(6,5)四种情况∴∵ 乘积不为3的倍数(2,5)、(4,5)两种情况∴∵∴小诚获胜概率大于小明获胜概率故这样的游戏规则不公平.
【点睛】本题考查了概率的基本运算及比较,以及画树状图列出每一个事件,概率的计算公式是本题的关键.
变式1.(2022·广东·九年级期中)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是( )
A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同
C.甲,乙获胜的概率均高于0.5 D.游戏公平
【答案】C
【分析】根据游戏结局共有三种情形,其中甲、乙获胜的概率都为,即可求解.
【详解】解:甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,结局有甲获胜(乙输)、平局、乙获胜(甲输),三种结局,其中,甲、乙获胜的概率都为,则A,B,D,选项正确,C选项错误.故选C
【点睛】本题考查了概率公式求概率,游戏的公平性,求得概率是解题的关键.
变式2.(2022·山东·青岛三模)小明和小亮用如图所示的两个转盘(每个转盘被分成3个面积相等的扇形)做游戏,转动两个转盘各1次,若两次数字之和为奇数,则小亮胜;若两次数字之和为偶数,则小明胜.这个游戏对双方公平吗?说说你的理由.
【答案】这个游戏对双方不公平,理由见解析.
【分析】先画树状图展示所有9种等可能的结果数,再找出两次数字之和为奇数的结果数和两次数字之和为偶数的结果数,再利用概率公式计算出小明胜的概率和小亮胜的概率,然后通过比较概率大小判断这个游戏对双方是否公平.
【详解】解:这个游戏对双方不公平.理由如下: 画树状图为:
共有9种等可能的结果数,其中两次数字之和为奇数的结果数5,
两次数字之和为偶数的结果数为4,
所以小明胜的概率=,小亮胜的概率=, 而, 所以这个游戏对双方不公平.
【点睛】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.
考点2、修改游戏方案
例1.(2022·湖北咸宁·九年级阶段练习)甲,乙两人用4个乒乓球做游戏,这4个乒乓球上分别标有数字2,3,6,6(球的形状,大小,颜色,质量都相同),他们将乒乓球放入盒内搅匀后,甲先摸,摸出后不放回,乙再摸.(1)请你用列表或画树形图的方法求出乙摸到标有数字是3的乒乓球的概率;(2)他俩约定:若甲摸到的球面数字不小于乙摸到的球面数字,则甲赢;若甲摸到的球面数字比乙的小,则乙赢.你认为这个游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,设计一个公平的游戏方案.
【答案】(1) (2)不公平;可将规则改为:甲乙两人分别摸球,甲先摸,摸出后不放回,乙再摸,如果他们摸出的球面数字之和为偶数,则甲赢,否则乙赢
【分析】(1)先根据题意画出树状图,然后根据概率的公式进行计算即可;
(2)先根据(1)中画出的树状图分别求出甲、乙获胜的概率,说明游戏不公平,然后设计一个使两个人获胜概率相同的游戏规则即可.
(1)解:由题意画树状图,如图所示:
∵共有12种等可能结果,其中摸到标有数字是3的乒乓球(记事件A)有3种情况:∴.
(2)∵甲摸到的球面数字不小于乙摸到的数字的情况有7种,
∴P(甲获胜),P(乙获胜),∵P(甲获胜)>P(乙获胜),∴这个规则不公平,
可将规则改为:甲乙两人分别摸球,甲先摸,摸出后不放回,乙再摸,如果他们摸出的球面数字之和为偶数,则甲赢,否则乙赢.(修改规则答案不唯一,只要概率相等即可)
【点睛】本题主要考查画树状图或列表法求概率,根据题意画出树状图或列出表格,是解题的关键.
变式1.(2022·陕西九年级阶段练习)爸爸寄回一枚北京奥运会纪念币,小颖和弟弟小明都想要,小颖提议玩“配紫色”游戏,赢的人得到纪念币,规则如下:如图,A、B两个可以自由转动的转盘,两人分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,那么就能配成紫色.若配成紫色,则小颖赢,否则小明赢.这个游戏对双方公中吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?
【答案】游戏不公平,若两次转出的全是红色,小颖赢;若两次转出的全是蓝色,小明赢,若能配成紫色,两个转盘重新转
【分析】根据题意画树状图列出所有等可能结果,找出配成紫色的情况数,再根据概率公式求出小颖和小明赢的概率,然后进行比较,得出游戏不公平,从而修改规则,即可得出答案.
【详解】解:根据题意画树状图如下:
由树状图可知共有9种等可能结果,其中能配成紫色的有5种结果,
则小颖赢的概率是,小明赢的概率是,∵>,∴游戏不公平,
若两次转出全是红色,小颖赢;若两次转出的全是蓝色,小明赢,若能配成紫色,两个转盘重新转.
【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
考点3、利用概率计算随机事件发生的平均次数
例1.(2023·江苏盐城·统考二模)小明参加了一个抽奖游戏:一个不透明的布袋里装有1个红球,2个蓝球,4个黄球,8个白球,这些小球除颜色外完全相同.从布袋里摸出1球,摸到红球、蓝球、黄球、白球可分别得到奖金30元、20元、5元和0元,则小明摸一次球得到的平均收益是________元.
【答案】6
【分析】求出任摸一球,摸到红球、黄球、绿球和白球的概率,那么获奖的平均收益可以用加权平均数的方法求得.
【详解】解: =2+4=6(元)故答案为6
【点睛】此题主要考查了考查概率的计算和加权平均数的计算方法,理解获奖平均收益实际就是求各种奖项的加权平均数.
变式1.(2022秋·广东九年级期中)某船队要对下月是否出海作出决策,若出海后是好天气,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费,船队队长通过上网查询下月的天气情况后,预测下月好天气的机会是,坏天气的机会是,则作出决策为________(填“出海”、“不出海”).
【答案】出海
【分析】利用概率算出获得收益的平均值比较即可.
【详解】解:预测下月好天气的机会是,坏天气的机会是,,
下月是好天气的可能性坏天气的可能性;
又若出海后是好天气,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费,
出海的话,获得平均收益(获得收益的数学期望)(元,
不出海:(元,
,船队队长作出决策为:出海.故答案为:出海.
【点睛】本题主要考查概率的实际应用,能够通过概率算出平均收获是解题关键.
考点4、概率在保险行业中的应用
例1.(2022·浙江·九年级专题练习)人寿保险公司的一张关于某地区的生命表的部分摘录如下:
年龄 活到该年龄的人数 在该年龄的死亡人数
40 80500 892
50 78009 951
60 69891 1200
70 45502 2119
80 16078 2001
… … …
根据上表解下列各题:(1)某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?
(保留三个有效数字);(2)如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?
【答案】(1)0.0122、0.206;(2)2438.18万
【详解】试题分析:(1)利用频率估算;(2)利用频率估算20000个人中有多少人去世,再乘以赔偿金.
试题解析:(1)P(50岁去世)=0.0122,P(活到80岁)=0.206 .
(2)951÷78009×20000×10≈2438.18万
变式1.(2023春·浙江·九年级专题练习)某航班每次约有200名乘客,一次飞行中飞机失事的概率,某保险公司为乘客提供保险,承诺飞机一旦失事,向每位乘客赔偿60万人民币.平均来说,保险公司应该至少向每位乘客收取__________元保险费才不亏本.
【答案】30
【分析】先求出飞机失事时保险公司应赔偿的金额,再根据飞机失事的概率求出赔偿的钱数即可解答.
【详解】解:每次约有200名乘客,如飞机一旦失事,每位乘客赔偿60万人民币,共计12000万元,
一次飞行中飞机失事的概率为,故赔偿的钱数为元,
故至少应该收取保险费每人元,故答案为:30.
【点睛】本题考查的是概率在现实生活中的运用,部分数目=总体数目乘以相应概率.
考点5、概率在转盘抽奖中的应用
例1.(2023秋·河南平顶山·九年级统考期末)某商场,为了吸引顾客,在“元旦”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:
方案一:是直接获得20元的礼金卷;
方案二:是得到一次播奖的机会.规则如下:已知如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了颜色不同外,其它构造完全相同,摇奖者同时转动两个转盘,指针分别指向一个区域(指针落在分割线上时重新转动转盘),根据指针指向的区域颜色(如表)决定送礼金券的多少.
指针指向 两红 一红一蓝 两蓝
礼金券(元) 27 9 27
(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
【答案】(1)(2)方案一比较实惠
【分析】(1)根据题意列出表格,然后根据概率公式求出结果即可;
(2)先分别算出指针指在两个红色区域,两个蓝色区域的概率,算出按方案二获得礼金券的平均值,最后进行比较即可得出答案.
【详解】(1)解:列表格如下:
蓝 蓝 红
蓝 (蓝,蓝) (蓝,蓝) (蓝,红)
红 (红,蓝) (红,蓝) (红,红)
红 (红,蓝) (红,蓝) (红,红)
∵由表格可知,共有9种等可能结果,其中转盘指针分别指向一红区和一蓝区的情况数有5种,
∴两款转盘指针分别指向一红区和一蓝区的概率.
(2)解:∵,
∴如果选择方案二,获得礼金券的平均值为:(元),
∵,∴选择方案一比较实惠.
【点睛】本题主要考查了列表法或画树状图法求概率,解题的关键是根据题意列出表格或画出树状图,熟练掌握概率的基本公式.
变式1.(2023·安徽·模拟预测)综合与实践
【问题再现】(1)课本中有这样一道概率题:如图1,这是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和橙色区域的概率分别是多少?请你解答.
【类比设计】(2)在元旦晚会上班长想设计一个摇奖转盘.请你在图2中设计一个转盘,自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为,二等奖:指针落在白色区域的概率为,一等奖:指针落在黄色区域的概率为.
【拓展运用】(3)在一次促销活动中,某商场为了吸引顾客,设立转盘,转盘被平均分为10份,顾客每消费200元转动1次,对准红1份,黄2份、绿3份区域,分别得奖金100元、50元、30元购物券,求转动1次所获购物券的平均数.
【答案】(1)P(蓝色区域),P(橙色区域)(2)见解析(3)29元
【分析】(1)根据概率公式进行计算即可;
(2)将转盘均分成份,根据概率求出各种颜色所占份数,即可得解;
(3)利用对准红、黄、绿的概率乘以各自对应的钱数,即可得解.
【详解】(1)解:根据几何概率的意义可知,P(蓝色区域),P(橙色区域).
(2)解:根据题意,将转盘均分成份,
则:红色占:份;白色占:份;黄色占:份;如图所示:(答案不唯一);
(3)解:由题意,得:转动1次的平均数为(元);
答:转动1次所获购物券的平均数是29元.
【点睛】本题考查概率的应用,以及计算加权平均数.熟练掌握概率公式,以及加权平均数的计算方法,是解题的关键.
考点6、概率在比赛中的应用
例1.(2023·河北·模拟预测)为迎接建党100周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录这8次成绩(单位:分),并按成绩从低到高整理成如下表所示,由于表格被污损,甲的第5个数据看不清,但知道甲的中位数比乙的众数大3.
甲 78 79 81 82 x 88 93 95
乙 75 80 80 83 85 90 92 95
(1)求x的值;(2)现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.
【答案】(1)x=84;(2)从统计的角度考虑,派甲参赛比较合适,理由见解析;从概率的角度考虑,派乙参赛比较合适,理由见解析.
【分析】(1)根据众数、中位数的计算方法分别计算即可;
(2)解法1:从平均数、方差以及数据的变化趋势分析.
解法2:从概率的角度以及数据的变化趋势分析.
【详解】解:(1)依题意,可知 甲的中位数为,乙的众数为80,
∴,解得x=84.
(2)解法一:派甲参赛比较合适.理由如下:




因为,,所以甲的成绩较稳定,派甲参赛比较合适.
解法二:派乙参赛比较合适.
理由如下: 从概率的角度看,甲获得85以上(含85分)的概率,
乙获得85分以上(含85分)的概率,因为P1<P2,所以派乙参赛比较合适.
【点睛】考查平均数、众数和中位数的意义,方差,概率等知识点,熟悉相关性质是解题的关键.
变式1.(2023·河北·模拟预测)一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有个选项,第二道题有个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.
(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;
(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.
【答案】(1);(2)建议小新在第二题使用“求助卡”,理由见解析
【分析】(1)画树状图展示所有9种等可能的结果数,找出小新都选对的结果数,然后根据概率公式计算;(2)如果小新在第二题使用“求助卡”,画树状图展示所有8种等可能的结果数,找出小新都选对的结果数,利用概率公式计算出小新顺利通过第一关的概率,然后比较两个概率的大小可判断小新在第几题使用“求助卡“.
【详解】解: (1)列树状图如下:
共有种等可能的结果,其中两道题都正确的结果有个,所以小新顺利通过第一关的概率为
(2)建议小明在第二题使用“求助卡”,若第二题使用“求助卡”,可列树状图如下:
此时小新顺利通过第一关的概率为 因为,所以建议小新在第二题使用“求助卡”
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
模块4:同步培优题库
全卷共25题 测试时间:80分钟 试卷满分:120分
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022秋·浙江杭州·九年级统考期末)一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要设( )
A.五位 B.四位 C.三位 D.二位
【答案】B
【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.
【详解】解:∵取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;
取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为;
∵,∴密码的位数至少需要四位,故选项B正确.故选:B.
【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率.
2.(2022秋·山东日照·九年级校考期末)小南观查某个红绿灯口,发现红灯时间20秒,黄灯5秒,绿灯15秒,当他下次到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
【答案】D
【分析】直接利用概率的意义即可求出出遇到绿灯的概率.
【详解】解:∵红灯时间20秒,黄灯5秒,绿灯15秒,
∴遇到绿灯的概率是=,故选:D.
【点睛】本题主要考查概率的意义以及概率求法,正确理解概率的意义是解题关键.
3.(2022·杭州市九年级期中)动物学家通过大量的调查估计:某种动物活到岁的概率为,活到岁的概率为,活到岁的概率为,现在有一只岁的动物,它活到岁的概率是(  )
A. B. C. D.
【答案】B
【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.
【解析】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,
故现年20岁到这种动物活到30岁的概率为=.故选:B.
【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.
4.(2022 蒙城县校级模拟)暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是(  )
A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢
B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢
C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢
D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢
【思路点拨】判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平,由此逐项分析即可.
【答案】解:A、掷一枚硬币,正面向上的概率为,反面向上的概率为,概率相等可选,故此选项不符合题意;
B、画出树形图可知:两枚都正面向上的概率为,一正一反向上的概率为,概率不相等可选,故此选项符合题意;
C、掷一枚骰子,向上的一面是奇数和偶数的概率都为,概率相等,故此选项不符合题意;
D、在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意,故选:B.
【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
5.(2022·浙江宁波·九年级月考)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是
【答案】A
【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.
【解析】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故错误;
B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故正确;
C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故正确;
D、第一次摸出的球是红球的概率是;
两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故正确;故选:A.
6.(2022 滨湖区期中)下列关于概率说法正确的是(  )
A.因为抛掷一枚图钉不是“钉尖着地”就是“钉尖不着地”(如图所示),所以“钉尖着地”发生的概率是0.5
B.连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现反面朝上的可能性大一些
C.小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能投中6次
D.随机事件发生的频率就是该事件发生的概率
【思路点拨】概率值只是反映了事件发生的机会的大小,不是会一定发生.
【答案】解:A.因为图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,不正确;
B.连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现正面朝上和反面朝上的可能性一样大,故说法不正确;
C.小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能会投中6次,故说法正确;
D.根据定义,随机事件的频率只是概率的近似值,它并不等于概率,故不正确.故选:C.
【点睛】本题解决的关键是理解概率的概念只是反映事件发生机会的大小;概率小的有可能发生,概率大的有可能不发生.
7.(2022·河南九年级专题练习)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏,分别转动两个转盘(指针指向区域分界线时,忽略不计),若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率为( )
A. B. C. D.
【答案】D
【解析】可根据题意画出树状图如解图,由树状图可知,共有12种等可能的结果,其中能配成紫色的结果有7种,所以能配成紫色的概率为.
8.(2022·浙江宁波·九年级一模)甲、乙两人各自掷一个普通的正方体骰子,如果两者之和为偶数,甲得1分;如果两者之和为奇数,乙得1分,此游戏( )
A.是公平的 B.对乙有利 C.对甲有利 D.以上都不对
【答案】A
【分析】甲、乙两人各自掷一个普通的正方体骰子,共有36种结果,其中两者之和为偶数有18种,两者之和为奇数有18种,据此计算两种情况的概率即可.
【解析】解:甲、乙两人各自掷一个普通的正方体骰子,共有36种结果,其中两者之和为偶数有18种,两者之和为奇数有18种,两者之和为偶数的概率为,则两者之积为奇数的概率为,,故选择A.
【点睛】本题考查了利用概率判断游戏的公平性,掌握概率的计算是解题的关键.
9.(2022·江苏苏州市·九年级专题练习)王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是(  )
A. B. C. D.
【答案】C
【分析】画树状图展示所有9种等可能的结果数,找出两人中至少有一个给出“差评”的结果数,然后根据概率公式求解.
【解析】画树状图为:
共有9种等可能的结果数,两人中至少有一个给差评”的结果数为5,
∴两人中至少有一个给出“差评”的概率=.故选:C.
10.(2023·广东广州·校考二模)在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为( )
A.两次求助都用在第1题 B.两次求助都用在第2题
C.在第1第2题各用一次求助 D.两次求助都用在第1题或都用在第2题
【答案】D
【分析】根据题意,分类讨论,列举或画出树状图列出等可能的情况,根据概率公式求出每一种情况下的概率,即可判断.
【详解】解:①若两次求助都用在第1题,
假设D选项是第1题的正确选项,选手可以排除的是A选项,使用两次求助时存在三种等可能的情况:第一种:求助排除AB选项,还剩CD两个选项,答对的概率是,
第二种:求助排除AC选项,还剩BD两个选项,答对的概率是,
第三种:求助排除BC选项,只剩D一个选项,答对的概率是1,
因此第一题答对的概率为:,第2题答对的概率为,
故此时该选手通关的概率为:;
②若在第1第2题各用一次求助,假设D选项是第1题的正确选项,选手可以排除的是A选项,使用一次求助时存在三种等可能的情况:
第一种:求助排除A选项,还剩BCD三个选项,答对的概率是,
第二种:求助排除B选项,还剩CD两个选项,答对的概率是,
第三种:求助排除C选项,还剩BD两个选项,答对的概率是,
因此第一题答对的概率为:,
第2题使用一次求助后,还剩3个选项,其中只有一个正确选项,因此答对的概率为,
故此时该选手通关的概率为:;
③两次求助都用在第2题,
画树状图如下:上层A、B、C表示第一题剩下的三个选项,下层A、B表示第二题剩下的二个选项,

共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:.
∵,∴两次求助都用在第1题或都用在第2题时,该选手通关的概率大,故选:D.
【点睛】此题考查的是求概率问题,掌握画树状图的方法、概率公式和分类讨论的数学思想是解决此题的关键.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·山东九年级期中)小东认为:任意抛掷一个啤酒盖,啤酒盖落地后印有商标一面向上的可能性的大小是,你认为小东的想法_____(“合理”或“不合理”)
【答案】不合理
【分析】由于啤酒盖的正反两面不均匀,抛掷后向上一面的两种可能:印有商标一面向上、印有商标一面向下的可能性不一样,据此解答即可.
【详解】解:小东的想法不合理;
理由:啤酒盖的正反两面不均匀,抛掷后向上一面的两种可能:印有商标一面向上、印有商标一面向下的可能性不一样,所以小东的想法不合理.故填不合理.
【点睛】本题主要考查了可能性的大小,熟悉啤酒瓶盖的构造是解答本的关键.
12.(2023·山东九年级月考)抛掷两枚普通的正方体骰子,把两枚骰子的点数相加,若第一枚骰子的点数为1,第二枚骰子的点数为5,则是“和为6”的一种情况,我们按顺序记作(1,5),如果一个游戏规定掷出“和为6”时甲方赢,掷出“和为9”时乙方赢,则这个游戏 ______(填“公平”、“不公平”).
【答案】不公平
【分析】列举出所有情况,看“和为6”及“和为9”情况数占所有情况数的多少即可.
【详解】解:如图所示:
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
共有36种情况,和为6情况数是5种,所以甲赢的概率为;和为9的情况数有4种,所以概率为 .
∵>,∴不公平.故答案为不公平.
【点睛】此题考查用列表格的方法解决概率问题;得到“和为6”及“和为9”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.
13.(2022 呼和浩特)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有   只,现年20岁的这种动物活到25岁的概率是   .
【思路点拨】用概率乘以动物的总只数即可得出20年后存活的数量;先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.
【答案】解:若设刚出生的这种动物共有a只,则20年后存活的有0.8a只,
设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,
故现年20岁到这种动物活到25岁的概率为=,故答案为:0.8a,.
【点睛】此题主要考查了概率,用到的知识点为:概率=所求情况数与总情况数之比.
14.(2022·南师附中树人学校)某航班每次约有100名乘客,一次飞行中飞机失事的概率约为P=0.00005.一家保险公司要为乘客保险,承诺飞机一旦失事,向每位乘客赔偿40万元人民币.平均来说,保险公司应收取的保险费至少为每人_____元才能确保不亏本.(实际上,飞机失事的概率远低于0.00005)
【答案】20
【分析】先求出飞机失事时保险公司应赔偿的金额,再根据飞机失事的概率求出赔偿的钱数即可解答.
【详解】解:每次约有100名乘客,如飞机一旦失事,每位乘客赔偿40万人民币,共计4000万元,
一次飞行中飞机失事的概率为P=0.00005,
故赔偿的钱数为40000000×0.00005=2000元,
故至少应该收取保险费每人=20元,故答案为:20.
【点睛】此题主要考查概率的应用,解题的关键是根据概率的性质求出赔偿的钱数.
15.(2021春 成都期末)我国新交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候.某丁字路口从A往B方向是直行,从A往C方向是左转,在A处看到红绿灯的设置时间依次为:红灯40秒、直行绿灯30秒、黄灯3秒、左转绿灯15秒、黄灯3秒;然后又从“红灯40秒…”开始循环,李叔叔随机地开车到达该路口,按照交通信号灯指示由A处往C左转弯方向走,他恰好直接通过的概率是   .
【思路点拨】由题意可得事件A对应15秒的时间长度,总的基本事件为91秒的时间长度,由概率的公式可得.
【答案】解:设事件A=“交通信号灯指示由A处往C左转弯方向走”,则事件A对应15秒的时间长度,而路口红绿灯的设置时间的一个周期为:40秒+30秒+3秒+15秒+3秒=91秒的时间长度.
根据概率的公式,可得事件A发生的概率为P(A)=,故答案为:.
【点睛】本题考查概率,是基础题,解题时要认真审题,注意概率计算公式的合理运用.
16.(2022 山西模拟)小明与小颖用一副去掉大王和小王的扑克牌做摸牌游戏:小明从中任意摸一张牌(不放回),小颖从剩余的牌中任意摸一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为2,3,4,5,6,7,8,9,10,J,Q,K,A),然后两人把摸到的牌都放回,重新开始游戏,若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是  .
【思路点拨】直接由概率公式求解即可.
【答案】解:由题意知,去掉大王、小王的扑克牌共有52张,其中比4小的牌有2,3,
∴小明获胜的概率是=,故答案为:.
【点睛】本题考查了概率公式,熟练掌握概率公式,弄清题意是解题的关键.
17.(2022·湖北九年级期中)2019年7月,中共中央国务院发布的《关于深化教育教学改革全面提高义务教育质量的意见》中明确提出“要把劳动教育作为中学教育阶段的必修课”.我校积极响应,率先落实意见的相关精神,将学校的公共卫生清洁任务划分给各班的学生完成,现某班准备成立三个小组,分别承担本班的“走廊清扫”、“栏杆清洁及维护”、“垃圾转运”这三项劳动任务.现从班委会成员中的四位同学(三男一女)中任选三个人分别担任这三个小组的小组长,其中该女生恰好不担任“垃圾转运”组的组长的概率为_________.(直接填数字)
【答案】
【分析】画树状图,共有24个等可能的结果,其中该女生恰好不担任“垃圾转运”组的组长的结果有18个,再由概率公式求解即可.
【详解】解:画树状图如图:
共有24个等可能的结果,其中该女生恰好不担任“垃圾转运”组的组长的结果有18个,
∴其中该女生恰好不担任“垃圾转运”组的组长的概率为,故答案为:.
【点睛】此题主要考查了树状图法求概率,正确画出树状图是解题的关键.
18.定义:若自然数n使得三个数的加法运算“”产生进位现象,则称n为“连加进位数”.例如,2不是“连加进位数”,因为不产生进位现象;4是“连加进位数”,因为产生进位现象;51是“连加进位数”,因为产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是_______.
【答案】
【分析】按照定义将数据依次代入进行验证,找出规律,得到“连加进位数”的个数,进而求出概率.
【解析】当n=0时,,不是连加进位数,
当n=1时,,不是连加进位数,
当n=2时,,不是连加进位数,
当n=3时,,是连加进位数,
故0到9中,0、1、2不是连加进位数;
当n=10时,,不是连加进位数,
当n=11时,,不是连加进位数,
当n=12时,,不是连加进位数,
当n=13时,,是连加进位数,
故10到19中,10、11、12不是连加进位数;
以此类推,20到29中,20、21、22不是连加进位数,30到39中,30、31、32不是连加进位数,40以后全部是连加进位数,所以连加进位数总共88个,故取到“连加进位数”的概率是.
【点睛】本题考查概率的算法,根据题意筛选出符合条件的的情况数目是解题的关键.
三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2022 龙华区期末)如图1为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.
(1)小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是   ;
(2)如图2,小明游戏时先踩中一个小方格,显示数字2,它表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷.
①若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是   ;
②小明与小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,试问这个约定对谁有利,请通过计算说明.
【思路点拨】(1)根据概率公式,用地雷的颗数除以小方格总数即可;
(2)①由显示数字2,表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷,直接利用概率公式求解即可求得答案;②根据概率公式,分别求出小明获胜与小亮获胜的概率,再比较即可.
【答案】解:(1)∵在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.∴小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是;
故答案为:;
(2)①由题意,可得若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是=;
故答案为:;
②约定对于小亮有利.理由如下:
由题意,可得P(小明获胜)==, P(小亮获胜)===,
因为<,P(小明获胜)<P(小亮获胜),所以约定对于小亮有利.
【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
20.(2022秋·浙江·九年级专题练习)你相信那些用摸彩来吸引人去碰“运气”的游戏吗?某人设摊“摸彩”,他手拿一个布袋,内装除颜色外完全相同的4个红球和4个绿球,每次让顾客“免费”从袋中摸出4个球,输赢的规则是:
所摸球的颜色 顾客的收益
4个全红 得50元
3红1绿 得20元
2红2绿 失30元
1红3绿 得20元
4个全绿 得50元
若你摸出了2红2绿则失30元,而对于其他四种情况,你均能赢钱.乍一看,此规则似乎对顾客有利,许多人都难免动心去碰碰“运气”,甚至有人连连试了数次.然而,顾客大多数都免不了以失败告终,而且试的次数越多,输的也就越多.假如5种情况是等可能的,则赢的机会为,输的机会仅为,平均每摸5次有4次都应该赢,但游戏的妙处就在于这5种情况的发生不是等可能的.经过计算可知,这5种情况出现的概率如下:
所摸球的颜色 出现的概率
4个全红
3红1绿
2红2绿
1红3绿
4个全绿
从表中可以看出,要想摸出“4个全红”或“4个全绿”的概率仅为,而摸到2红2绿的概率为,即有超过一半的机会失30元.
请你计算这种游戏中顾客每摸一次球的平均收益.
【答案】元
【分析】根据平均收益等于各种情况的概率与其收益的乘积的和解答即可.
【详解】解:根据题意,这种游戏中顾客每摸一次球的平均收益为:
(元).
【点睛】本题考查概率的意义,理解“平均收益”的意义,熟知平均收益等于各种情况的概率与其收益的乘积的和是解答的关键.
21.(2022·西安市九年级模拟)如图,可以自由转动的两个转盘被它的半径分成标有数字的扇形区域,每个扇形圆心角的度数如图所示,小亮和小周做游戏,规则如下:小亮,小周同时转动两个转盘,待转查自动停止后,指针指向扇形内部,则该扇形内部的数字即为转出的结果(若指针指向两个扇形的交线,则此次转动无效,重新转动,直到两个转盘的指针均指向扇形的内部为止)若两个转所得数字乘积为1则小亮赢,否则小周赢.
(1)只转动右边转盘则出现的概率为____________.(2)这个游戏公平吗 请说明理由.
【答案】(1);(2)这个游戏不公平,理由见详解.
【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,小亮赢的结果有5种,小周赢的结果有4种,再由概率公式求出小周赢的概率,小亮赢1概率,即可得出结论.
【详解】解:(1)只转动转盘B,则出现的概率为:,故答案为:;
(2)这个游戏不公平,理由如下:画树状图如下:
共有9种等可能的结果,小亮赢的结果有5种,小周赢的结果有4种,
∴小周赢的概率为,小亮赢1概率为,∵,∴这个游戏不公平.
【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.
22.(2022·陕西九年级一模)迄今为止,我国在航天领域获得的成就可谓硕果累累,当前探月、高分、北斗等航天领域国家科技重大专项任务圆满收官.在第六个“中国航天日”来临之际,某班举办了《我的航天梦,我的中国梦》演讲大赛,现有6人报名参加比赛,其中女生4人,男生2人.
(1)若要从这6名选手中随机选择一位参赛,则选到女生的概率为______;
(2)经过一轮预选,甲、乙两人的演讲水平不相上下,现要在他们两人中选一人去参加全校的演讲比赛,班委会计划通过摸球的方式选派一人参加学校的演讲大赛.规则如下:
现有A、B两个不透明的袋子,A袋中装有3个小球,把它们分别标上数字1、2、3,B袋中装有4个小球,把它们分别标上数字1、2、3、4,这些小球除数字外其余完全相同.先由甲从A袋中随机摸出一个小球,记下小球上的数字;再由乙从B袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选甲去;若两个数字的和为偶数,则选乙去.请用列表法或画树状图的方法说明这个规则对双方是否公平.
【答案】(1);(2)公平
【分析】(1)利用简单地概率计算公式求解即可;
(2)利用画树状图法计算概率,比较概率的大小,判断游戏的公平性
【详解】解:(1)若要从这6名选手随机选择一位参赛,则选到女生的概率为,故答案为:;
(2)这个规则对双方公平,理由如下:画树状图如图:
共有12个等可能的结果,其中两个数字的和为奇数、偶数的结果各有6个,
(和为奇数),(和为偶数),
(和为奇数)(和为偶数),这个规则对双方公平.
【点睛】本题考查概率的计算,判断游戏的公平性,熟练运用公式,画树状图法求概率是解题的关键.
23.(2022春·九年级单元测试)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏。他们用四个字母做成枚棋子,如图,棋子A有1枚,棋子B有2枚,棋子C有3枚,棋子D有4枚.“字母棋”的游戏规则如下:①游戏时两人各摸一枚棋子进行比赛称为一轮比赛,先摸者摸出的棋子不放回;②棋子A胜棋子B、棋子C,棋子B胜棋子C、棋子D,棋子C胜棋子D,棋子D胜棋子A;③相同棋子不分胜负.

(1)若小玲先摸,则小玲摸到棋子C的概率是多少
(2)已知小玲先摸到了棋子C,小军在剩余的9枚棋子中随机摸一枚,这一轮小玲胜小军的概率是多少
(3)当小玲摸到什么棋子时,胜小军的概率最大
【答案】(1)(2)小玲胜小军的概率是(3)当小玲摸到棋子B时,胜小军的概率最大
【分析】(1)画出树状图,根据概率公式进行作答即可;
(2)已知小玲先摸到了棋子C,还剩9枚棋子,因为棋子C胜棋子D,只有4枚棋子,即可知道这一轮小玲胜小军的概率; (3)分情况讨论,根据概率的大小即可得出结论.
【详解】(1)解:根据题意,画出树状图:

共有个等可能的结果,小玲摸到棋子C的结果有3个,
所以若小玲先摸,则小玲摸到棋子C的概率是;
(2)解:因为小玲先摸到了棋子C,若小军在剩余的9枚棋子中随机摸一枚,那小军摸到棋子的结果有9个,只有当小军摸到棋子D,此时小玲胜小军,所以这一轮小玲胜小军的概率为;
(3)解:①若小玲摸到A棋,小军摸到B,C棋,小玲胜,∴小玲胜小军的概率是;
②若小莹摸到B棋,小军摸到D,C棋,小玲胜,∴小玲胜小军的概率是;
③若小玲摸到C棋,小军摸到D棋,小玲胜,小玲胜小军的概率是;
④若小玲摸到D棋,小军摸到A棋,小玲胜,∴小玲胜小军的概率是;
∵,由此可见,小玲摸到B棋,小玲胜小军的概率最大.
【点睛】本题考查了树状图法以及概率公式,正确掌握概率公式是解题的关键.
24.(2023·福建·模拟预测)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.25 0.2 0.1
说明:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
(1)已知第三类电影获得好评的有45部,则______;
(2)如果电影公司从收集的电影中随机选取1部,求抽到的这部电影是第四类电影中的好评电影的概率;(3)根据前期调查反馈:第一类电影上座率与好评率的关系约为:上座率=好评率×1.5+0.1,第二类电影上座率与好评率的关系约为:上座率=好评率×1.5+0.1.现有一部第一类的A电影和一部第二类的B电影将同时在某影院上映.A电影的票价为45元,B电影的票价为40元,该影院的最大放映厅的满座人数为1000人,公司要求排片经理将这两部电影安排在最大放映厅放映,且两部电影每天都要有排片.现有3个场次可供排片,仅从该放映厅的票房收入最高考虑,排片经理应如何分配A、B两部电影的场次,以使得当天的票房收入最高?
【答案】(1)(2)(3)应安排A电影两个场次B电影一个场次
【分析】(1)根据图标直接求值即可;
(2)先求出总数和获得好评的第四类电影数,再根据概率公式即可求出答案;
(3)求得A,B电影上座率和排一场A,B电影的收入,即可得到答案.
【详解】(1)解:由题意可知,;
(2)∵总的电影部数是:(部),
第四类电影中获得好评的有(部),
∴P(这部电影是获得好评的第四类电影)
(3)A电影上座率,B电影上座率,
排一场A电影收入(元),
排一场B电影收入(元),
由于有3个场次可供排片,为使当天的票房收入最高,应安排A电影两个场次B电影一个场次.
【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比;读懂图表,从图表中找到必要的数据是解题的关键.
25.(2022·福建福州·校考模拟预测)福州第十九中学每年的校园科学文化艺术节中的“爱心义卖会”活动,是学校同学们表现爱心的重要活动,在2021年的义卖会上,九年某班的同学设计了一个“爱心盲盒大抽奖”的活动,其规则如下:通过购买爱心小盲盒,每个爱心小盲盒3元,根据小盲盒内事先藏好的数字,可以进行兑奖,而每一位参与活动的同学都有4个小盲盒可以选择,其中一个小盲盒藏有数字4,可以兑换4元,有一个小盲盒藏有数字2,可以兑换2元,剩余的两个小盲盒藏有数字1,可以兑换1元,每位同学最多只能买2个小盲盒.
(1)张同学购买了两个小盲盒,用列表法或树状图的方法求出求他购买的第1个小盲盒里藏有数字4的概率:______;(2)李同学手上有7元,请用概率统计的知识说明,从李同学最终在手上的钱的平均值为依据,她是买一个小盲盒好,还是两个小盲盒好.
【答案】(1) (2)李同学应该买一个小盲盒好,理由见解析
【分析】(1)用列表法展示12种等可能的结果数,找出张同学购买的第1个小盲盒里藏有数字4的结果数,然后根据概率公式求解;(2)先分别计算出李同学购买一个小盲盒和两个小盲盒后最终在手上的钱的平均值,然后再比较即可判断.
(1)解:列表得:
4 2 1 1
4 /
2 /
1 /
1 /
共有12种等可能情况,记购买的第1个小盲盒里藏有数字4为事件A,共3种情况,
∴.故答案为:.
(2)若李同学购买1个小盲盒,花去3元,还有4元,
则可兑换4元的概率为,兑换2元的概率为,兑换1元的概率为,
因此此时李同学最终在手上的钱的平均值为:(元);
若李同学购买2个小盲盒,花去6元,还有1元,由(1)可知,
可兑换6元的概率为,可兑换5元的概率为,
可兑换3元的概率为,可兑换2元的概率为,
因此此时李同学最终在手上的钱的平均值为:(元);
∵,∴李同学应该买一个小盲盒好.
【点睛】本题考查的是用列表法或画树状图法求概率和概率的应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.理解和掌握概率公式的应用是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题2.4 概率的简单应用
模块1:学习目标
1、体验概率计算在生产、生活和科学研究中的广泛应用;
2、能用初步的概率知识解决如中奖预测、人寿保险等方面的问题。
模块2:知识梳理
人们在生活、生产和科学研究中,经常需要知道一些事件发生的可能性有多大。例如:买彩票时希望知道中奖的概率有多大;出门旅游时希望知道天气是否晴朗等。概率与人们的生活密切相关,能帮助我们对许多事件作出判断和决策。因此在生活、生产和科研等各个领域都有着广泛的应用。
模块3:核心考点与典例
考点1、游戏的公平性
例1.(2022·湖南湘西·九年级期末)学完《概率初步》后,小诚和小明两个好朋友利用课外活动时间自制A、B两组卡片共5张,A组三张分别写有数字2,4,6,B组两张分别写有3,5.它们除了数字外没有任何区别.他俩提出了如下两个问题请你解答:
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果;
(3)如果他俩还制定这样一个游戏规则:若选出的两数之积为3的倍数,则小诚获胜;否则小明获胜.请问这样的游戏规则对小诚、小明双方公平吗?请说明理由.
变式1.(2022·广东·九年级期中)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是( )
A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同
C.甲,乙获胜的概率均高于0.5 D.游戏公平
变式2.(2022·山东·青岛三模)小明和小亮用如图所示的两个转盘(每个转盘被分成3个面积相等的扇形)做游戏,转动两个转盘各1次,若两次数字之和为奇数,则小亮胜;若两次数字之和为偶数,则小明胜.这个游戏对双方公平吗?说说你的理由.
考点2、修改游戏方案
例1.(2022·湖北咸宁·九年级阶段练习)甲,乙两人用4个乒乓球做游戏,这4个乒乓球上分别标有数字2,3,6,6(球的形状,大小,颜色,质量都相同),他们将乒乓球放入盒内搅匀后,甲先摸,摸出后不放回,乙再摸.(1)请你用列表或画树形图的方法求出乙摸到标有数字是3的乒乓球的概率;(2)他俩约定:若甲摸到的球面数字不小于乙摸到的球面数字,则甲赢;若甲摸到的球面数字比乙的小,则乙赢.你认为这个游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,设计一个公平的游戏方案.
变式1.(2022·陕西九年级阶段练习)爸爸寄回一枚北京奥运会纪念币,小颖和弟弟小明都想要,小颖提议玩“配紫色”游戏,赢的人得到纪念币,规则如下:如图,A、B两个可以自由转动的转盘,两人分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,那么就能配成紫色.若配成紫色,则小颖赢,否则小明赢.这个游戏对双方公中吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?
考点3、利用概率计算随机事件发生的平均次数
例1.(2023·江苏盐城·统考二模)小明参加了一个抽奖游戏:一个不透明的布袋里装有1个红球,2个蓝球,4个黄球,8个白球,这些小球除颜色外完全相同.从布袋里摸出1球,摸到红球、蓝球、黄球、白球可分别得到奖金30元、20元、5元和0元,则小明摸一次球得到的平均收益是______元.
变式1.(2022秋·广东九年级期中)某船队要对下月是否出海作出决策,若出海后是好天气,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费,船队队长通过上网查询下月的天气情况后,预测下月好天气的机会是,坏天气的机会是,则作出决策为________(填“出海”、“不出海”).
考点4、概率在保险行业中的应用
例1.(2022·浙江·九年级专题练习)人寿保险公司的一张关于某地区的生命表的部分摘录如下:
年龄 活到该年龄的人数 在该年龄的死亡人数
40 80500 892
50 78009 951
60 69891 1200
70 45502 2119
80 16078 2001
… … …
根据上表解下列各题:(1)某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?
(保留三个有效数字);(2)如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?
变式1.(2023春·浙江·九年级专题练习)某航班每次约有200名乘客,一次飞行中飞机失事的概率,某保险公司为乘客提供保险,承诺飞机一旦失事,向每位乘客赔偿60万人民币.平均来说,保险公司应该至少向每位乘客收取__________元保险费才不亏本.
考点5、概率在转盘抽奖中的应用
例1.(2023秋·河南平顶山·九年级统考期末)某商场,为了吸引顾客,在“元旦”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:
方案一:是直接获得20元的礼金卷;
方案二:是得到一次播奖的机会.规则如下:已知如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了颜色不同外,其它构造完全相同,摇奖者同时转动两个转盘,指针分别指向一个区域(指针落在分割线上时重新转动转盘),根据指针指向的区域颜色(如表)决定送礼金券的多少.
指针指向 两红 一红一蓝 两蓝
礼金券(元) 27 9 27
(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
变式1.(2023·安徽·模拟预测)综合与实践
【问题再现】(1)课本中有这样一道概率题:如图1,这是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和橙色区域的概率分别是多少?请你解答.
【类比设计】(2)在元旦晚会上班长想设计一个摇奖转盘.请你在图2中设计一个转盘,自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为,二等奖:指针落在白色区域的概率为,一等奖:指针落在黄色区域的概率为.
【拓展运用】(3)在一次促销活动中,某商场为了吸引顾客,设立转盘,转盘被平均分为10份,顾客每消费200元转动1次,对准红1份,黄2份、绿3份区域,分别得奖金100元、50元、30元购物券,求转动1次所获购物券的平均数.
考点6、概率在比赛中的应用
例1.(2023·河北·模拟预测)为迎接建党100周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录这8次成绩(单位:分),并按成绩从低到高整理成如下表所示,由于表格被污损,甲的第5个数据看不清,但知道甲的中位数比乙的众数大3.
甲 78 79 81 82 x 88 93 95
乙 75 80 80 83 85 90 92 95
(1)求x的值;(2)现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.
变式1.(2023·河北·模拟预测)一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有个选项,第二道题有个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.
(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;
(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.
模块4:同步培优题库
全卷共25题 测试时间:80分钟 试卷满分:120分
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022秋·浙江杭州·九年级统考期末)一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要设( )
A.五位 B.四位 C.三位 D.二位
2.(2022秋·山东日照·九年级校考期末)小南观查某个红绿灯口,发现红灯时间20秒,黄灯5秒,绿灯15秒,当他下次到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
3.(2022·杭州市九年级期中)动物学家通过大量的调查估计:某种动物活到岁的概率为,活到岁的概率为,活到岁的概率为,现在有一只岁的动物,它活到岁的概率是(  )
A. B. C. D.
4.(2022 蒙城县校级模拟)暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是(  )
A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢
B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢
C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢
D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢
5.(2022·浙江宁波·九年级月考)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是
6.(2022 滨湖区期中)下列关于概率说法正确的是(  )
A.因为抛掷一枚图钉不是“钉尖着地”就是“钉尖不着地”(如图所示),所以“钉尖着地”发生的概率是0.5
B.连续三次抛一枚均匀硬币均正面朝上,若第四次再抛,出现反面朝上的可能性大一些
C.小明投篮投中的概率是60%,这表明小明平均每投篮10次,可能投中6次
D.随机事件发生的频率就是该事件发生的概率
7.(2022·河南九年级专题练习)用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏,分别转动两个转盘(指针指向区域分界线时,忽略不计),若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率为( )
A. B. C. D.
8.(2022·浙江宁波·九年级一模)甲、乙两人各自掷一个普通的正方体骰子,如果两者之和为偶数,甲得1分;如果两者之和为奇数,乙得1分,此游戏( )
A.是公平的 B.对乙有利 C.对甲有利 D.以上都不对
9.(2022·江苏苏州市·九年级专题练习)王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是(  )
A. B. C. D.
10.(2023·广东广州·校考二模)在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为( )
A.两次求助都用在第1题 B.两次求助都用在第2题
C.在第1第2题各用一次求助 D.两次求助都用在第1题或都用在第2题
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·山东九年级期中)小东认为:任意抛掷一个啤酒盖,啤酒盖落地后印有商标一面向上的可能性的大小是,你认为小东的想法_____(“合理”或“不合理”)
12.(2023·山东九年级月考)抛掷两枚普通的正方体骰子,把两枚骰子的点数相加,若第一枚骰子的点数为1,第二枚骰子的点数为5,则是“和为6”的一种情况,我们按顺序记作(1,5),如果一个游戏规定掷出“和为6”时甲方赢,掷出“和为9”时乙方赢,则这个游戏 ______(填“公平”、“不公平”).
13.(2022 呼和浩特)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有   只,现年20岁的这种动物活到25岁的概率是   .
14.(2022·南师附中树人学校)某航班每次约有100名乘客,一次飞行中飞机失事的概率约为P=0.00005.一家保险公司要为乘客保险,承诺飞机一旦失事,向每位乘客赔偿40万元人民币.平均来说,保险公司应收取的保险费至少为每人_____元才能确保不亏本.(实际上,飞机失事的概率远低于0.00005)
15.(2021春 成都期末)我国新交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候.某丁字路口从A往B方向是直行,从A往C方向是左转,在A处看到红绿灯的设置时间依次为:红灯40秒、直行绿灯30秒、黄灯3秒、左转绿灯15秒、黄灯3秒;然后又从“红灯40秒…”开始循环,李叔叔随机地开车到达该路口,按照交通信号灯指示由A处往C左转弯方向走,他恰好直接通过的概率是   .
16.(2022 山西模拟)小明与小颖用一副去掉大王和小王的扑克牌做摸牌游戏:小明从中任意摸一张牌(不放回),小颖从剩余的牌中任意摸一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为2,3,4,5,6,7,8,9,10,J,Q,K,A),然后两人把摸到的牌都放回,重新开始游戏,若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是  .
17.(2022·湖北九年级期中)2019年7月,中共中央国务院发布的《关于深化教育教学改革全面提高义务教育质量的意见》中明确提出“要把劳动教育作为中学教育阶段的必修课”.我校积极响应,率先落实意见的相关精神,将学校的公共卫生清洁任务划分给各班的学生完成,现某班准备成立三个小组,分别承担本班的“走廊清扫”、“栏杆清洁及维护”、“垃圾转运”这三项劳动任务.现从班委会成员中的四位同学(三男一女)中任选三个人分别担任这三个小组的小组长,其中该女生恰好不担任“垃圾转运”组的组长的概率为_________.(直接填数字)
18.定义:若自然数n使得三个数的加法运算“”产生进位现象,则称n为“连加进位数”.例如,2不是“连加进位数”,因为不产生进位现象;4是“连加进位数”,因为产生进位现象;51是“连加进位数”,因为产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是_______.
三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2022 龙华区期末)如图1为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.
(1)小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是   ;
(2)如图2,小明游戏时先踩中一个小方格,显示数字2,它表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷.
①若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是   ;
②小明与小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,试问这个约定对谁有利,请通过计算说明.
20.(2022秋·浙江·九年级专题练习)你相信那些用摸彩来吸引人去碰“运气”的游戏吗?某人设摊“摸彩”,他手拿一个布袋,内装除颜色外完全相同的4个红球和4个绿球,每次让顾客“免费”从袋中摸出4个球,输赢的规则是:
所摸球的颜色 顾客的收益
4个全红 得50元
3红1绿 得20元
2红2绿 失30元
1红3绿 得20元
4个全绿 得50元
若你摸出了2红2绿则失30元,而对于其他四种情况,你均能赢钱.乍一看,此规则似乎对顾客有利,许多人都难免动心去碰碰“运气”,甚至有人连连试了数次.然而,顾客大多数都免不了以失败告终,而且试的次数越多,输的也就越多.假如5种情况是等可能的,则赢的机会为,输的机会仅为,平均每摸5次有4次都应该赢,但游戏的妙处就在于这5种情况的发生不是等可能的.经过计算可知,这5种情况出现的概率如下:
所摸球的颜色 出现的概率
4个全红
3红1绿
2红2绿
1红3绿
4个全绿
从表中可以看出,要想摸出“4个全红”或“4个全绿”的概率仅为,而摸到2红2绿的概率为,即有超过一半的机会失30元.
请你计算这种游戏中顾客每摸一次球的平均收益.
21.(2022·西安市九年级模拟)如图,可以自由转动的两个转盘被它的半径分成标有数字的扇形区域,每个扇形圆心角的度数如图所示,小亮和小周做游戏,规则如下:小亮,小周同时转动两个转盘,待转查自动停止后,指针指向扇形内部,则该扇形内部的数字即为转出的结果(若指针指向两个扇形的交线,则此次转动无效,重新转动,直到两个转盘的指针均指向扇形的内部为止)若两个转所得数字乘积为1则小亮赢,否则小周赢.
(1)只转动右边转盘则出现的概率为____________.(2)这个游戏公平吗 请说明理由.
22.(2022·陕西九年级一模)迄今为止,我国在航天领域获得的成就可谓硕果累累,当前探月、高分、北斗等航天领域国家科技重大专项任务圆满收官.在第六个“中国航天日”来临之际,某班举办了《我的航天梦,我的中国梦》演讲大赛,现有6人报名参加比赛,其中女生4人,男生2人.
(1)若要从这6名选手中随机选择一位参赛,则选到女生的概率为______;
(2)经过一轮预选,甲、乙两人的演讲水平不相上下,现要在他们两人中选一人去参加全校的演讲比赛,班委会计划通过摸球的方式选派一人参加学校的演讲大赛.规则如下:
现有A、B两个不透明的袋子,A袋中装有3个小球,把它们分别标上数字1、2、3,B袋中装有4个小球,把它们分别标上数字1、2、3、4,这些小球除数字外其余完全相同.先由甲从A袋中随机摸出一个小球,记下小球上的数字;再由乙从B袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选甲去;若两个数字的和为偶数,则选乙去.请用列表法或画树状图的方法说明这个规则对双方是否公平.
23.(2022春·九年级单元测试)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏。他们用四个字母做成枚棋子,如图,棋子A有1枚,棋子B有2枚,棋子C有3枚,棋子D有4枚.“字母棋”的游戏规则如下:①游戏时两人各摸一枚棋子进行比赛称为一轮比赛,先摸者摸出的棋子不放回;②棋子A胜棋子B、棋子C,棋子B胜棋子C、棋子D,棋子C胜棋子D,棋子D胜棋子A;③相同棋子不分胜负.

(1)若小玲先摸,则小玲摸到棋子C的概率是多少
(2)已知小玲先摸到了棋子C,小军在剩余的9枚棋子中随机摸一枚,这一轮小玲胜小军的概率是多少
(3)当小玲摸到什么棋子时,胜小军的概率最大
24.(2023·福建·模拟预测)电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.25 0.2 0.1
说明:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
(1)已知第三类电影获得好评的有45部,则______;
(2)如果电影公司从收集的电影中随机选取1部,求抽到的这部电影是第四类电影中的好评电影的概率;(3)根据前期调查反馈:第一类电影上座率与好评率的关系约为:上座率=好评率×1.5+0.1,第二类电影上座率与好评率的关系约为:上座率=好评率×1.5+0.1.现有一部第一类的A电影和一部第二类的B电影将同时在某影院上映.A电影的票价为45元,B电影的票价为40元,该影院的最大放映厅的满座人数为1000人,公司要求排片经理将这两部电影安排在最大放映厅放映,且两部电影每天都要有排片.现有3个场次可供排片,仅从该放映厅的票房收入最高考虑,排片经理应如何分配A、B两部电影的场次,以使得当天的票房收入最高?
25.(2022·福建福州·校考模拟预测)福州第十九中学每年的校园科学文化艺术节中的“爱心义卖会”活动,是学校同学们表现爱心的重要活动,在2021年的义卖会上,九年某班的同学设计了一个“爱心盲盒大抽奖”的活动,其规则如下:通过购买爱心小盲盒,每个爱心小盲盒3元,根据小盲盒内事先藏好的数字,可以进行兑奖,而每一位参与活动的同学都有4个小盲盒可以选择,其中一个小盲盒藏有数字4,可以兑换4元,有一个小盲盒藏有数字2,可以兑换2元,剩余的两个小盲盒藏有数字1,可以兑换1元,每位同学最多只能买2个小盲盒.
(1)张同学购买了两个小盲盒,用列表法或树状图的方法求出求他购买的第1个小盲盒里藏有数字4的概率:______;(2)李同学手上有7元,请用概率统计的知识说明,从李同学最终在手上的钱的平均值为依据,她是买一个小盲盒好,还是两个小盲盒好.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)