专题2.5 简单事件的概率 章末检测(第2章)- 2023-2024学年九年级上册数学同步课堂+培优题库(浙教版)(解析卷)

文档属性

名称 专题2.5 简单事件的概率 章末检测(第2章)- 2023-2024学年九年级上册数学同步课堂+培优题库(浙教版)(解析卷)
格式 zip
文件大小 3.1MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-07-07 10:58:26

文档简介

中小学教育资源及组卷应用平台
专题2.5 简单事件的概率 章末检测
全卷共26题 测试时间:120分钟 试卷满分:120分
一、选择题(本大题共10小题,每小题3分,共30分.)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2023春·江苏·八年级专题练习)下列事件:①在干燥的环境中,种子发芽;②在足球赛中,弱队战胜强队;③抛掷 10 枚硬币,5 枚正面朝上;④彩票的中奖概率是,买 100 张有 5 张会中奖. 其中随机事件有( )
A.1 个 B.2 个 C.3 个 D.4 个
【答案】C
【分析】不确定事件,即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此逐个判定即可求解.
【详解】解:①在干燥的环境中,种子发芽是不可能事件;
②在足球赛中,弱队战胜强队可能发生也可能不发生,是随机事件;
③抛掷10枚硬币,5枚正面朝上是随机事件;
④彩票的中奖概率是,买100张有5张会中奖是随机事件.故是随机事件的有3个,故选:C.
【点睛】本题考查随机事件,不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2.(2022·江苏·八年级阶段练习)一个不透明的口袋中有8个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n等于( )
A.6 B.7 C.12 D.13
【答案】D
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【详解】解:摸出12个球可能都是黑球,至少有一个是白球,球的个数大于12,最小是13,
故选:D.
【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3.(2022·江苏·八年级专题练习)乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )
A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大
C.甲、乙获胜的可能性一样大 D.无法判断
【答案】A
【分析】根据事件发生的可能性即可判断.
【详解】∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当 ∴甲获胜的可能性比乙大故选A.
【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.
4.(2022·广东郁南·月考)某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为( ).
A. B. C. D.
【答案】D
【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.
【解析】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1 =.故选D.
【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.
5.(2022 本溪九年级期末)小明已有两根长度分别是3cm和6cm的细竹签,盒子里面有四根长度分别是3cm,4cm,7cm,8cm的细竹签,小明随意从盒子里面抽取一个细竹签,恰能与已有两根细竹签首尾顺次连接成三角形的概率是(  )
A. B. C. D.1
【思路点拨】根据三角形的三边关系确定第三根竹签长度的取值范围,再结合概率公式即可得出答案.
【答案】解:设第3根竹签长为xcm,
∵已有两根长度分别是3cm和6cm的细竹签,
∴第三根可以构成三角形的范围是:3<x<9,
其中4cm,7cm,8cm符合题意,
则小明从盒子里随意抽取一根细竹签,恰能与已有的两根细竹签首尾顺次联结组成三角形的概率是:.故选:C.
【点睛】此题主要考查了概率公式以及三角形三边关系,正确得出符合题意的竹签长是解题关键.
7.(2022 宝应县九年级期中)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为(  )
A.3 B.4 C.5 D.6
【思路点拨】根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据概率公式列出方程求解可得.
【答案】解:根据题意,得:=0.4,解得n=3,
经检验:n=3是分式方程的解且符合题意,故选:A.
【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.
5.(2022 怀宁县九年级模拟)如图,随机闭合开关S1,S2,S3中的两个,灯泡不能够发光的概率是(  )
A. B. C. D.
【思路点拨】采用列表法列出所有情况,再根据不能让灯泡发光的情况利用概率公式进行计算即可求解.
【答案】解:列表如下:
共有6种情况,不能发光的有2种情况,
即不能让灯泡发光的概率是,故选:B.
【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
6.(2022·山东·九年级期末)如图是学校发放的“你是否喜欢游泳”的抽样问卷调查卡(要求必答且只能选择一项).收集卡片后随机抽取到“喜欢游泳”同学的概率是,这意味着(  )
A.收回5张调查卡片,其中2张选择“喜欢游泳”卡片
B.选择“喜欢游泳”的卡片占收回总调查卡的40%
C.选择“喜欢游泳”与“不喜欢游泳”的卡片数比为2:5
D.每抽出100张卡片,有60张卡片选择“不喜欢游泳”
【答案】B
【分析】根据概率的意义:一般地,在大量重复实验中,如果事件A发生的频率稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,来回答即可.
【详解】解:100%=40%,
∴学校发放的“你是否喜欢游泳”的抽样问卷调查卡(要求必答且只能选择一项).收集卡片后随机抽取到“喜欢游泳”同学的概率是,这意味着选择“喜欢游泳”的卡片占收回总调查卡的40%.故选:B.
【点睛】此题考查的是概率的意义,掌握其概念是解决此题的关键.
7.(2022·江苏·八年级专题练习)一个不透明的袋子里有4个红球和若干个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,记好颜色后放回,经过大量的摸球实验,摸到白球的频率在0.75附近摆动,则袋中白球的个数是( )
A.3 B.8 C.12 D.16
【答案】C
【分析】根据白球的频率是0.75计算即可;
【详解】设白球有x个,根据题意可得,
,∴,∴;故答案选C.
【点睛】本题主要考查了概率的公式应用,准确计算是解题的关键.
8.(2022·江苏·八年级专题练习)校篮球队员小亮训练定点投篮以提高命中率,下表是小亮一次训练时的进球情况,其中说法正确的是( )
投篮数(次) 50 100 150 200 …
进球数(次) 40 81 118 160 …
A.小亮每投10个球,一定有8个球进 B.小亮投球前8个进,第9、10个一定不进
C.小亮比赛中的投球命中率一定为80% D.小亮比赛中投球命中率可能为100%
【答案】D
【分析】根据概率的知识点判断即可;
【详解】小亮每投10个球,不一定有8个球进,故错误;
小亮投球前8个进,第9、10个不一定不进,故错误;
小亮比赛中的投球命中率可能为80%,故错误;
小亮比赛中投球命中率可能为100%,故正确;故答案选D.
【点睛】本题主要考查了概率的相关知识点,准确判断是解题的关键.
9.(2022秋·浙江温州·九年级统考期中)欢欢将自己的核酸检测二维码打印在面积为的正方形纸上, 如图所示, 为了估计图中黑色部分的面积, 他在纸内随机掷点, 经过大量重复试验, 发现点落入黑色部分的频率稳定在左右,据此可以估计黑色部分的面积约为( )
A. B. C. D.
【答案】D
【分析】用总面积乘以落入黑色部分的频率稳定值即可.
【详解】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为,故选:D.
【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
10.(2023秋·陕西西安·九年级统考期末)某小组作“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是(  )
A.掷一个质地均匀的正六面体骰子,向上的面点数是4
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
【答案】A
【分析】根据统计图可知,试验结果在附近波动,即其概率,计算四个选项的概率,约为者即为正确答案.
【详解解:A.掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为,故本选项符合题意;
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是,故本选项不符合题意;
C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,故本选项不符合题意;
D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是红球的概率为,故本选项不符合题意;故选:A.
【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率等于所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022 镇江期末)某学生买票去看电影《你好,李焕英》,“电影票座位号码是奇数”属于
  事件.
【思路点拨】利用随机事件的概念即可得出答案.
【答案】解:任意购买一张电影票,“电影票座位号码是奇数”可能发生,也可能不发生,属于随机事件,故答案为:随机.
【点睛】本题考查了随机事件的概念,正确理解概念是解决本题的关键.
12.(2020·湖北宜昌·中考真题)技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)
【答案】0.99
【分析】根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.
【详解】解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.故答案为0.99.
【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.
13.(2022·北京·二模)为了更好的开展线上学习,李老师打算选择一款适合网上授课的软件,他让年级同学在使用过A、B、C三款软件后进行评分,统计结果如下:
五星 四星 三星 两星 一星 合计
A 52 30 13 3 2 100
B 49 36 10 4 1 100
C 35 30 25 6 4 100
(说明:学生对于网上授课软件的综合评价从高到低,依次为五星、四星、三星、二星和一星).
李老师选择_________(填“A”、“B”或“C”)款网上授课软件,能更好的开展线上学习(即评价不低于四星)的可能性最大.
【答案】B
【分析】分别求出三款软件评价不低于四星的比例,然后再进行比较即可得到结论.
【详解】A软件的综合评价不低于四星的比例为:(52+30)÷100=0.82;
B软件的综合评价不低于四星的比例为:(49+36)÷100=0.85;
C软件的综合评价不低于四星的比例为:(35+30)÷100=0.65;0.65<0.82<0.85
故李老师选择B款网上授课软件,能更好的开展线上学习的可能性最大.故答案为:B.
【点睛】考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
14.(2022 河南模拟)为了缓解中考备考压力,增加学习兴趣,丁老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字“中”“考”“必”“胜”;转盘二被三等分,分别写有汉字“我”“必”“胜”.将两个转盘各转动一次(当指针指向区域分界线时,不记,重转),若得到“必”“胜”两字,则获得游戏一等奖,请求出获得游戏一等奖的概率为  .
【思路点拨】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.
【答案】解:根据题意画图如下:
由图可知,共有12种等可能的结果数,其中获得游戏一等奖的有2种,
则获得游戏一等奖的概率为=.
故答案为:.
【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
15.(2022·宁夏九年级二模)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在20%和45%,则口袋中白色球的个数很可能是________.
【答案】14
【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.
【详解】解:∵摸到红色球、黑色球的频率稳定在20%和45%,
∴摸到白球的频率为1-20%-45%=35%,
故口袋中白色球的个数可能是40×35%=14个.故答案为:14.
【点睛】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.
16.(2022·南师附中树人学校)某航班每次约有100名乘客,一次飞行中飞机失事的概率约为P=0.00005.一家保险公司要为乘客保险,承诺飞机一旦失事,向每位乘客赔偿40万元人民币.平均来说,保险公司应收取的保险费至少为每人_____元才能确保不亏本.(实际上,飞机失事的概率远低于0.00005)
【答案】20
【分析】先求出飞机失事时保险公司应赔偿的金额,再根据飞机失事的概率求出赔偿的钱数即可解答.
【详解】解:每次约有100名乘客,如飞机一旦失事,每位乘客赔偿40万人民币,共计4000万元,
一次飞行中飞机失事的概率为P=0.00005,
故赔偿的钱数为40000000×0.00005=2000元,
故至少应该收取保险费每人=20元,故答案为:20.
【点睛】此题主要考查概率的应用,解题的关键是根据概率的性质求出赔偿的钱数.
17.(2020·江苏扬州·中考真题)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________.
【答案】2.4
【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形面积得60%计算即可;
【详解】∵正方形的二维码的边长为2cm,
∴正方形二维码的面积为,
∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴黑色部分的面积占正方形二维码面积得60%,
∴黑色部分的面积约为:,故答案为.
【点睛】本题主要考查了利用频率估计概率进行求解,准确立即数据的意义是解题的关键.
18.(2022 海淀区校级模拟)不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,再随机摸出一个.如图显示了某数学小组开展上述摸球活动的某次实验的结果.下面有四个推断:
①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率是0.33;
②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35;③可以根据本次实验结果,计算出盒子中约有红球7个;
④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率一定是0.40.
所有合理推断的序号是  .
【思路点拨】根据概率公式和给出的摸到红球的频率示意图分别对每一项进行分析,即可得出答案.
【答案】解:①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率接近0.33,故本选项推理错误;
②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35,故本选项推理正确;
③可以根据本次实验结果,计算出盒子中约有红球20×0.35=7(个),故本选项推理正确;
④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率也是0.35,故本选项推理错误.故答案为:②③.
【点睛】此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2022·江苏八年级期中)一只不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?
(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?
【答案】(1)从中任意摸出个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.
【分析】(1)根据事情发生的可能性,即可进行判断;(2)根据红球的多少判断,只能确定有可能出现;(3)根据白球的数量最多,摸出的可能性就最大,红球的数量最少,摸出的可能性就最小;
(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.
【详解】解:(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;
(2)不能事先确定摸到的一定是红球;
(3)摸到白球的可能性最大,摸到红球的可能性最小;
(4)只要袋子中红球、绿球和白球的数量相等即可.
【点睛】此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.
20.(2022·广东阳江市·九年级一模)在一个不透明的袋子中装有仅颜色不同的个小球,其中红球个,黑球个.(1)先从袋子中取出个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件.当为何值时,事件是必然事件?(2)先从袋子中取出个红球,再放入个一样的黑球并摇匀,若随机摸出个球是黑球的概率等于,求的值.
【答案】(1);(2)
【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件;(2)利用概率公式列出方程,求得的值即可.
【详解】解:(1)当时,事件是必然事件.
(2)依题意,得,解得,故所求的值是.
【点睛】本题考查概率问题,掌握概率的计算公式以及准确理解题意是解答本题的关键.
21.(2022·陕西榆林市·七年级期末)有7张纸签,分别标有数字1,2,3,4,5,6,7,小明从中任意抽取一张纸签(不放回),小颖从剩余的纸签中任意抽取一张,谁抽到的数字大谁就获胜,然后两人把抽到的纸签都放回,重新开始游戏.(1)现小明已经抽到数字4,然后小颖抽纸签,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经抽到数字6,小明、小颖获胜的概率分别是多少?若小明已经抽到数字1,情况又如何?
【答案】(1)小明获胜的概率是;小颖获胜的概率是;(2)小明已经抽到数字6,小明获胜的概率是;小颖获胜的概率是;小明已经抽到数字1,则小明获胜的概率是0,小颖获胜的概率是1.
【分析】(1)根据题意列出可能性,根据概率公式即可求解;
(2)根据题意列出可能性,根据概率公式即可求解.
【详解】解:(1)共有7张纸签,
小明已经抽到数字4,如果小明获胜的话,小颖只可能抽到数字1、2、3,所以小明获胜的概率是.
如果小颖要获胜,抽到的数字只能是5、6、7,所以小颖获胜的概率是
(2)若小明已经抽到数字6,
如果小明获胜的话,小颖只可能抽到数字1,2、3、4,5,所以小明获胜的概率是.
如果小颖要获胜,抽到的数字只能是7,所以小颖获胜的概率是.
若小明已经抽到数字1,则小明获胜的概率是0,小颖获胜的概率是1.
【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.
22.(2022 渝中区一模)如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明在此封闭图形内画出一个半径为2米的圆后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:
掷小石子落在不规则图形内的总次数 50 150 300 …
小石子落在圆内(含圆上)的次数m 20 59 123 …
小石子落在圆外的阴影部分(含外缘)的次数n 29 91 176 …
(1)当投掷的次数很大时,则m:n的值越来越接近   (结果精确到0.1)
(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在   附近(结果精确到0.1);(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)
【分析】(1)根据提供的m和n的值,计算m:n后即可确定二者的比值逐渐接近的值;
(2)大量试验时,频率可估计概率;(3)利用概率,求出圆的面积比上总面积的值,计算出阴影部分面积.
【答案】解:(1)20÷29≈0.69;48÷95≈0.65;89÷180≈0.69,…
当投掷的次数很大时,则m:n的值越来越接近0.7;
(2)观察表格得:随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在0.4,
(3)设封闭图形的面积为a,根据题意得:=0.4,解得:a=10π,故答案为:0.7,0.4,10π.
【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
23.(2022·南京八年级期中)在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:
摸球总数n 400 1500 3500 7000 9000 14000
摸到红球数m 325 1336 3203 6335 8073 12628
摸到红球的频率(精确到0.001) 0.813 0.891 0.915 0.905 0.897 0.902
(1)由此估计任意摸出1个球为红球的概率约是   (精确到0.1)
(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a个球,其中红球有b个,则摇匀后从中任意摸出1个球为红球的概率P可以表示为,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P’,请通过计算比较P与P'的大小.
【答案】(1)0.9;(2)P>P'
【分析】(1)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,从而得出答案;
(2)由(1)得出b=0.9a,根据概率公式得出P′=,再两者相减得出p﹣p′>0,从而得出P与P'的大小.
【详解】(1)根据给出的数据可得:任意摸出1个球为红球的概率约是0.9;故答案为0.9;
(2)由(1)得:=0.9,即b=0.9a,由题意得:P′=,
p﹣p′=﹣=====,
∵a>0,∴p﹣p′>0,∴P>P'.
【点睛】本题考查了概率公式,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.
24.(2022 成都市九年级期中)盒子中有8个白色乒乓球,6个黄色乒乓球,2个红色乒乓球,16个乒乓球除颜色外,形状和大小完全一样,小明同学从盒子中任意摸出一个乒乓球.
(1)你认为小明同学摸出的乒乓球最有可能是____________色;
(2)请你计算出摸到每种颜色乒乓球的概率,(摸到白色乒乓球)=______;(摸到黄色乒乓球)=_____;(摸到红色乒乓球)=______
(3)小明和小亮同学一起做游戏,小明或小亮从上述盒子中任意摸出一个乒乓球,如果摸到白色乒乓球,小明获胜,否则小亮获胜,这个游戏对双方公平吗?为什么?
【答案】(1)白 (2),, (3)游戏对双方公平,理由见解析
【解析】(1)∵∴摸到白色小球的可能性最大;故答案为:白色;
(2)共有16个乒乓球,其中8个白色乒乓球,6个黄色乒乓球,2个红色乒乓球
∴(摸到白色乒乓球)=;(摸到黄色乒乓球)=;
(摸到红色乒乓球)=;故答案为:,,;
(3)由(2)可知,(摸到白色乒乓球)=;
∴小明获胜的概率为=小亮获胜的概率;∴游戏对双方公平.
【点睛】本题考查等可能事件的概率,利用概率公式求概率是解题的关键.
25.(2022 浙江九年级期中)福州第十九中学每年的校园科学文化艺术节中的“爱心义卖会”活动,是学校同学们表现爱心的重要活动,在2021年的义卖会上,九年某班的同学设计了一个“爱心盲盒大抽奖”的活动,其规则如下:通过购买爱心小盲盒,每个爱心小盲盒3元,根据小盲盒内事先藏好的数字,可以进行兑奖,而每一位参与活动的同学都有4个小盲盒可以选择,其中一个小盲盒藏有数字4,可以兑换4元,有一个小盲盒藏有数字2,可以兑换2元,剩余的两个小盲盒藏有数字1,可以兑换1元,每位同学最多只能买2个小盲盒.
(1)张同学购买了两个小盲盒,用列表法或树状图的方法求出求他购买的第1个小盲盒里藏有数字4的概率:______;
(2)李同学手上有7元,请用概率统计的知识说明,从李同学最终在手上的钱的平均值为依据,她是买一个小盲盒好,还是两个小盲盒好.
【答案】(1) (2)李同学应该买一个小盲盒好,理由见解析
【分析】(1)用列表法展示12种等可能的结果数,找出张同学购买的第1个小盲盒里藏有数字4的结果数,然后根据概率公式求解;(2)先分别计算出李同学购买一个小盲盒和两个小盲盒后最终在手上的钱的平均值,然后再比较即可判断.
【解析】(1)解:列表得:
4 2 1 1
4 /
2 /
1 /
1 /
共有12种等可能情况,记购买的第1个小盲盒里藏有数字4为事件A,共3种情况,
∴.故答案为:.
(2)若李同学购买1个小盲盒,花去3元,还有4元,
则可兑换4元的概率为,兑换2元的概率为,兑换1元的概率为,
因此此时李同学最终在手上的钱的平均值为:(元);
若李同学购买2个小盲盒,花去6元,还有1元,
由(1)可知,可兑换6元的概率为,可兑换5元的概率为,
可兑换3元的概率为,可兑换2元的概率为,
因此此时李同学最终在手上的钱的平均值为:(元);
∵,∴李同学应该买一个小盲盒好.
【点睛】本题考查的是用列表法或画树状图法求概率和概率的应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.理解和掌握概率公式的应用是解题的关键.
26.(2022 江苏九年级期中)计数问题是我们经常遇到的一类问题,学会解决计数问题的方法,可以使我们方便快捷,准确无误的得到所要求的结果,下面让我们借助两个问题,了解计数问题中的两个基本原理---加法原理、乘法原理.
问题1.从青岛到大连可以乘坐飞机、火车、汽车、轮船直接到达.如果某一天中从青岛直接到达大连的飞机有3班,火车有4班,汽车有8班,轮船有5班,那么这一天中乘坐某种交通工具从青岛直接到达大连共有 种不同的走法:
问题2.从甲地到乙地有3条路,从乙地到丙地有4条路,那么从甲地经过乙地到丙地,共有 种不同的走法:
方法探究
加法原理:一般的,完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.
实践应用1
问题3.如图1,图中线段代表横向、纵向的街道,小明爸爸打算从A点出发开车到B点办事(规定必须向北走,或向东走,不走回头路),问他共有多少种不同的走法?其中从A点出发到某些交叉点的走法数已在图2填出.
(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,如果将走法数填入图2的空圆中,便可以借助所填数字回答:从A点出发到B点的走法共有 种:
(2)根据上面的原理和图3的提示,请算出从A点出发到达B点,并禁止通过交叉点C的走法有 种.
(3)现由于交叉点C道路施工,禁止通行.小明爸爸如果任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是
实践应用2
问题4.小明打算用 5种颜色给如下图的5个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色,问共有 种不同的染色方法.
【答案】问题1:20;问题2:12;问题3:(1)35;(2)17;(3);问题4:240种.
【分析】问题1. 根据一天中乘飞机有3种走法,乘火车有4种走法,乘汽车有8种走法,轮船有5种走法,再由加法原理求解即可,
问题2. 根据乘火车有3种走法,乘汽车有2种走法,再由乘法原理求解即可,
问题3.
【解析】(1)根据完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,则到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.从而计算出从A点到达其余各交叉点的走法数;
(2)此题有两种计算方法:方法一是先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它;方法二是删除与C点紧相连的线段,运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法;
(3)结合(1)和(2)的结论,即可求得概率.
问题4. 因为A与其它4个区域都相邻,所以先填A区域,有5种选择;那么B区域,有4种选择;由于C区域与A和B都相邻,所以有3种选择;同理,E区域与A、B、C都相邻,所以有2种选择;而D区域只与A、C、E相邻,不与B相邻,因此可以和B区域同色,所以D区域有2种选择;根据乘法原理可得共有:5×4×3×2×2=240(种)染色方法.
问题1. 一天中乘飞机有3种走法,乘火车有4种走法,乘汽车有8种走法,轮船有5种走法,每一种走法都可以从青岛直接到达大连,按加法原理,所以共有3+4+8+5=20种不同的走法.
问题2. 因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,按乘法原理,共有 3×2=6种不同的走法.
问题3.
(1)∵完成从A点到B点必须向北走,或向东走,
∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和,故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1.
答:从A点到B点的走法共有35种.
(2)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C的走法数.
完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C点到B点,
使用分类加法计数原理,算出从A点到C点的走法是3种,见图2;算出从C点到B点的走法为6种,见图3,再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种.
∴从A点到B点但不经过C点的走法数为35-18=17种.
方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段,运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4,
∴从A点到B点并禁止经过C点的走法数为35-18=17种.
(3)P(顺利开车到达B点)=.
答:任选一种走法,顺利开车到达B点的概率是.
问题4. 解:乘法原理可得:
5×4×3×2×2=240(种).
答:共有240种染色方法.
【点睛】此题考查了加法原理与乘法原理.此题难度较大,理解题意,能利用题意中的方法进行计算是解此题的关键,注意利用画图的方法求解比较简单.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题2.5 简单事件的概率 章末检测
全卷共26题 测试时间:120分钟 试卷满分:120分
一、选择题(本大题共10小题,每小题3分,共30分.)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2023春·江苏·八年级专题练习)下列事件:①在干燥的环境中,种子发芽;②在足球赛中,弱队战胜强队;③抛掷 10 枚硬币,5 枚正面朝上;④彩票的中奖概率是,买 100 张有 5 张会中奖. 其中随机事件有( )
A.1 个 B.2 个 C.3 个 D.4 个
2.(2022·江苏·八年级阶段练习)一个不透明的口袋中有8个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n等于( )
A.6 B.7 C.12 D.13
3.(2022·江苏·八年级专题练习)乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )
A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大
C.甲、乙获胜的可能性一样大 D.无法判断
4.(2022·广东郁南·月考)某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为( ).
A. B. C. D.
5.(2022 本溪九年级期末)小明已有两根长度分别是3cm和6cm的细竹签,盒子里面有四根长度分别是3cm,4cm,7cm,8cm的细竹签,小明随意从盒子里面抽取一个细竹签,恰能与已有两根细竹签首尾顺次连接成三角形的概率是(  )
A. B. C. D.1
7.(2022 宝应县九年级期中)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为(  )
A.3 B.4 C.5 D.6
5.(2022 怀宁县九年级模拟)如图,随机闭合开关S1,S2,S3中的两个,灯泡不能够发光的概率是(  )
A. B. C. D.
6.(2022·山东·九年级期末)如图是学校发放的“你是否喜欢游泳”的抽样问卷调查卡(要求必答且只能选择一项).收集卡片后随机抽取到“喜欢游泳”同学的概率是,这意味着(  )
A.收回5张调查卡片,其中2张选择“喜欢游泳”卡片
B.选择“喜欢游泳”的卡片占收回总调查卡的40%
C.选择“喜欢游泳”与“不喜欢游泳”的卡片数比为2:5
D.每抽出100张卡片,有60张卡片选择“不喜欢游泳”
7.(2022·江苏·八年级专题练习)一个不透明的袋子里有4个红球和若干个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,记好颜色后放回,经过大量的摸球实验,摸到白球的频率在0.75附近摆动,则袋中白球的个数是( )
A.3 B.8 C.12 D.16
8.(2022·江苏·八年级专题练习)校篮球队员小亮训练定点投篮以提高命中率,下表是小亮一次训练时的进球情况,其中说法正确的是( )
投篮数(次) 50 100 150 200 …
进球数(次) 40 81 118 160 …
A.小亮每投10个球,一定有8个球进 B.小亮投球前8个进,第9、10个一定不进
C.小亮比赛中的投球命中率一定为80% D.小亮比赛中投球命中率可能为100%
9.(2022秋·浙江温州·九年级统考期中)欢欢将自己的核酸检测二维码打印在面积为的正方形纸上, 如图所示, 为了估计图中黑色部分的面积, 他在纸内随机掷点, 经过大量重复试验, 发现点落入黑色部分的频率稳定在左右,据此可以估计黑色部分的面积约为( )
A. B. C. D.
10.(2023秋·陕西西安·九年级统考期末)某小组作“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是(  )
A.掷一个质地均匀的正六面体骰子,向上的面点数是4
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022 镇江期末)某学生买票去看电影《你好,李焕英》,“电影票座位号码是奇数”属于
  事件.
12.(2020·湖北宜昌·中考真题)技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)
13.(2022·北京·二模)为了更好的开展线上学习,李老师打算选择一款适合网上授课的软件,他让年级同学在使用过A、B、C三款软件后进行评分,统计结果如下:
五星 四星 三星 两星 一星 合计
A 52 30 13 3 2 100
B 49 36 10 4 1 100
C 35 30 25 6 4 100
(说明:学生对于网上授课软件的综合评价从高到低,依次为五星、四星、三星、二星和一星).
李老师选择_________(填“A”、“B”或“C”)款网上授课软件,能更好的开展线上学习(即评价不低于四星)的可能性最大.
14.(2022 河南模拟)为了缓解中考备考压力,增加学习兴趣,丁老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字“中”“考”“必”“胜”;转盘二被三等分,分别写有汉字“我”“必”“胜”.将两个转盘各转动一次(当指针指向区域分界线时,不记,重转),若得到“必”“胜”两字,则获得游戏一等奖,请求出获得游戏一等奖的概率为  .
15.(2022·宁夏九年级二模)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在20%和45%,则口袋中白色球的个数很可能是________.
16.(2022·南师附中树人学校)某航班每次约有100名乘客,一次飞行中飞机失事的概率约为P=0.00005.一家保险公司要为乘客保险,承诺飞机一旦失事,向每位乘客赔偿40万元人民币.平均来说,保险公司应收取的保险费至少为每人_____元才能确保不亏本.(实际上,飞机失事的概率远低于0.00005)
17.(2020·江苏扬州·中考真题)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________.
18.(2022 海淀区校级模拟)不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,再随机摸出一个.如图显示了某数学小组开展上述摸球活动的某次实验的结果.下面有四个推断:
①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率是0.33;
②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35;③可以根据本次实验结果,计算出盒子中约有红球7个;
④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率一定是0.40.
所有合理推断的序号是  .
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2022·江苏八年级期中)一只不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?
(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?
20.(2022·广东阳江市·九年级一模)在一个不透明的袋子中装有仅颜色不同的个小球,其中红球个,黑球个.(1)先从袋子中取出个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件.当为何值时,事件是必然事件?(2)先从袋子中取出个红球,再放入个一样的黑球并摇匀,若随机摸出个球是黑球的概率等于,求的值.
21.(2022·陕西榆林市·七年级期末)有7张纸签,分别标有数字1,2,3,4,5,6,7,小明从中任意抽取一张纸签(不放回),小颖从剩余的纸签中任意抽取一张,谁抽到的数字大谁就获胜,然后两人把抽到的纸签都放回,重新开始游戏.(1)现小明已经抽到数字4,然后小颖抽纸签,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经抽到数字6,小明、小颖获胜的概率分别是多少?若小明已经抽到数字1,情况又如何?
22.(2022 渝中区一模)如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明在此封闭图形内画出一个半径为2米的圆后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:
掷小石子落在不规则图形内的总次数 50 150 300 …
小石子落在圆内(含圆上)的次数m 20 59 123 …
小石子落在圆外的阴影部分(含外缘)的次数n 29 91 176 …
(1)当投掷的次数很大时,则m:n的值越来越接近   (结果精确到0.1)
(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在   附近(结果精确到0.1);(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)
23.(2022·南京八年级期中)在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:
摸球总数n 400 1500 3500 7000 9000 14000
摸到红球数m 325 1336 3203 6335 8073 12628
摸到红球的频率(精确到0.001) 0.813 0.891 0.915 0.905 0.897 0.902
(1)由此估计任意摸出1个球为红球的概率约是   (精确到0.1)
(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a个球,其中红球有b个,则摇匀后从中任意摸出1个球为红球的概率P可以表示为,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P’,请通过计算比较P与P'的大小.
24.(2022 成都市九年级期中)盒子中有8个白色乒乓球,6个黄色乒乓球,2个红色乒乓球,16个乒乓球除颜色外,形状和大小完全一样,小明同学从盒子中任意摸出一个乒乓球.
(1)你认为小明同学摸出的乒乓球最有可能是____________色;
(2)请你计算出摸到每种颜色乒乓球的概率,(摸到白色乒乓球)=______;(摸到黄色乒乓球)=_____;(摸到红色乒乓球)=______
(3)小明和小亮同学一起做游戏,小明或小亮从上述盒子中任意摸出一个乒乓球,如果摸到白色乒乓球,小明获胜,否则小亮获胜,这个游戏对双方公平吗?为什么?
25.(2022 浙江九年级期中)福州第十九中学每年的校园科学文化艺术节中的“爱心义卖会”活动,是学校同学们表现爱心的重要活动,在2021年的义卖会上,九年某班的同学设计了一个“爱心盲盒大抽奖”的活动,其规则如下:通过购买爱心小盲盒,每个爱心小盲盒3元,根据小盲盒内事先藏好的数字,可以进行兑奖,而每一位参与活动的同学都有4个小盲盒可以选择,其中一个小盲盒藏有数字4,可以兑换4元,有一个小盲盒藏有数字2,可以兑换2元,剩余的两个小盲盒藏有数字1,可以兑换1元,每位同学最多只能买2个小盲盒.
(1)张同学购买了两个小盲盒,用列表法或树状图的方法求出求他购买的第1个小盲盒里藏有数字4的概率:______;(2)李同学手上有7元,请用概率统计的知识说明,从李同学最终在手上的钱的平均值为依据,她是买一个小盲盒好,还是两个小盲盒好.
26.(2022 江苏九年级期中)计数问题是我们经常遇到的一类问题,学会解决计数问题的方法,可以使我们方便快捷,准确无误的得到所要求的结果,下面让我们借助两个问题,了解计数问题中的两个基本原理---加法原理、乘法原理.
问题1.从青岛到大连可以乘坐飞机、火车、汽车、轮船直接到达.如果某一天中从青岛直接到达大连的飞机有3班,火车有4班,汽车有8班,轮船有5班,那么这一天中乘坐某种交通工具从青岛直接到达大连共有 种不同的走法:
问题2.从甲地到乙地有3条路,从乙地到丙地有4条路,那么从甲地经过乙地到丙地,共有 种不同的走法:
方法探究
加法原理:一般的,完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.
实践应用1
问题3.如图1,图中线段代表横向、纵向的街道,小明爸爸打算从A点出发开车到B点办事(规定必须向北走,或向东走,不走回头路),问他共有多少种不同的走法?其中从A点出发到某些交叉点的走法数已在图2填出.
(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,如果将走法数填入图2的空圆中,便可以借助所填数字回答:从A点出发到B点的走法共有 种:
(2)根据上面的原理和图3的提示,请算出从A点出发到达B点,并禁止通过交叉点C的走法有 种.
(3)现由于交叉点C道路施工,禁止通行.小明爸爸如果任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是
实践应用2
问题4.小明打算用 5种颜色给如下图的5个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色,问共有 种不同的染色方法.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)