专题2.7 探索勾股定理 2023-2024学年八年级上册数学同步课堂+培优题库(浙教版)(解析卷)

文档属性

名称 专题2.7 探索勾股定理 2023-2024学年八年级上册数学同步课堂+培优题库(浙教版)(解析卷)
格式 zip
文件大小 6.7MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-07-15 22:13:37

文档简介

中小学教育资源及组卷应用平台
专题2.7 探索勾股定理
模块1:学习目标
1.掌握勾股定理,会用勾股定理解决简单的几何问题.
2.掌握勾股定理定理,会用上述定理判定一个三角形是不是直角三角形.
模块2:知识梳理
1、勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.
要点: (1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
2、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
3、勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形.
要点:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
模块3:核心考点与典例
考点1.勾股树与面积问题再探究
解题技巧:解决此类问题要熟练运用勾股定理,结合正方形、三角形、半圆的面积公式即可解决问题.
例1.(2022·河南八年级期末)如图,正方形的边长为2,其面积标记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为,…按照此规律继续下去,则的值为( )
A. B. C. D.
【答案】A
【分析】根据等腰直角三角形的性质可得出,写出部分的值,根据数的变化找出变化规律“”(n≥3),依此规律即可得出结论.
【详解】解:在图中标上字母,如图所示.
∵正方形的边长为2,为等腰直角三角形,
∴,,∴.
观察,发现规律:,,,S,…,
∴.当时,,故选:A.
【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题关键是找出规律“”,解决该题目时,写出部分的值,根据数值的变化找出变化规律是关键.
变式1.(2022·云南九年级一模)如图是按照一定规律“生长”的“勾股树”:
经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,……,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是( )
A.12 B.32 C.64 D.128
【答案】C
【分析】通过观察已知图形可以发现:图(2)比图(1)多出4个正方形,图(3)比图(2)多出8个正方形,图(4)比图(3)多出16个正方形,……,以此类推可得图形的变换规律.
【详解】解:由题可得,图(2)比图(1)多出4个正方形,
图(3)比图(2)多出8个正方形, ;
图(4)比图(3)多出16个正方形, ;
图(5)比图(4)多出32个正方形, ;
照此规律,图(n)比图(n-1)多出正方形的个数为:
故图(6)比图(5)多出正方形的个数为:;故答案为:C.
【点睛】此题考查了图形的变化类问题,主要考核学生的观察能力和空间想象能力.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
变式2.(2022·重庆涪陵·八年级期末)如图,在四边形ABCD中,,分别以四边形ABCD的四条边为边长,向外作四个正方形,面积分别为,,和.若,,,则的值是( )
A.6 B.8 C.9 D.10
【答案】B
【分析】连接AC,构造和,然后在中利用勾股定理求出,在中求出,进而求得的值.
【详解】如图所示,连接, 在中,
即;同理,在中,
即则故选B.
【点睛】本题考查勾股定理,解决本题的关键是将面积转化为勾股定理求边长平方即可.
变式3.(2022·贵州遵义·八年级期末)如图是数学史上著名的“希波克拉底月牙问题”:在中,,,,,分别以的各边为直径向外作半圆,则图中两个“月牙”,即阴影部分的面积为________.(用含,,的式子表示)
【答案】
【分析】根据题意得:阴影部分的面积等于两个小半圆的面积之和加上直角三角形ABC的面积减去大半圆的面积,由勾股定理得到,代入即可求解.
【详解】解:根据题意得:阴影部分的面积等于两个小半圆的面积之和加上直角三角形ABC的面积减去大半圆的面积,
∵在中,,,,,∴,
∴阴影部分的面积等于
. 故答案为:
【点睛】本题主要考查了勾股定理的应用,根据题意得到阴影部分的面积等于两个小半圆的面积之和加上直角三角形ABC的面积减去大半圆的面积是解题的关键.
考点2.赵爽弦图相关问题
解题技巧:解决此类问题要熟练运用勾股定理及完全平方公式,结合赵爽弦图利用面积之间的关系即可解决问题.
例1.(2022·河北初二期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为49,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=49;②a-b=2;③2ab=45;④a+b=9.其中正确的结论是( )
A.①②③ B.①②③④ C.①③ D.②④
【答案】A
【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.
【解析】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方= a2+b2,
由图知,大正方形的边长为直角三角形的斜边长,
∴大正方形的面积=斜边的平方= a2+b2,即a2+b2=49,故①正确;
根据题意得4个直角三角形的面积=4××ab=2ab,
4个直角三角形的面积=S大正方形-S小正方形 =49-4=45,即2ab=45,故③正确;
由①③可得a2+b2+2ab=49+45=94,即(a+b)2=94,∴a+b≠9,故④错误,
由①③可得a2+b2-2ab=49-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.
【点睛】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.
变式1.(2023·北京八年级期末)用4张全等的直角三角形纸片拼接成如图所示的图案,得到两个大小不同的正方形.若正方形ABCD的面积为10,AH=3,则正方形EFGH的面积为____.
【答案】4
【分析】根据正方形的面积,可得AD2=10,再根据勾股定理求出DH的值,从而得四个直角三角形的面积之和,进而即可求解.
【详解】解:∵正方形ABCD的面积为10,AH=3,∴AD2=10,
∴在中,DH=,∴,
∵四个直角三角形全等,∴正方形EFGH的面积=10-=4,故答案是:4.
【点睛】本题主要考查勾股定理和勾股弦图,掌握勾股定理,是解题的关键.
变式2.(2022·江苏·八年级专题练习)如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案.如果图1中的直角三角形的长直角边为5,短直角边为3,图2中阴影部分的面积为S,那么S的值为______.
【答案】16
【分析】利用勾股定理,求出空白部分面积,通过间接作差得出阴影部分面积.
【详解】解:由题意作出如下图,
得,BD=5-3=2,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=34,
△ADC面积=(5×3 2×3)=,阴影部分的面积S=34 4×=16, 故答案为:16.
【点睛】本题考查了勾股定理中赵爽弦图模型,关键在于正确找出勾股关系,利用转换面积作差求解.
变式3.(2023.成都市八年级期中)如图,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.连结,交于点P,若正方形的面积为48,.则的值是__________.
【答案】16
【分析】先证明△AEP≌△CGM(ASA),则S△AEP=S△CGM,所以两三角形面积的差是中间正方形面积的一半,设AE=x,BE=8-x,根据勾股定理得:AE2+BE2=AB2,x2+(8-x)2=48,则2x2-16x=-16,整体代入可得结论.
【详解】解:∵正方形ABCD的面积为48,
∴AB2=48,设AE=x,∵AE+BE=8,∴BE=8-x,
Rt△AEB中,由勾股定理得:AE2+BE2=AB2,∴x2+(8-x)2=48,∴2x2-16x=-16,
∵AH⊥BE,BE⊥CF,∴AH∥CF,∴∠EAP=∠GCM,
∵“赵爽弦图”是由四个全等的直角三角形与中间的小正方形EFGH拼成的一个大正方形ABCD,
∴△AEB≌△CGD,∴AE=CG,∴△AEP≌△CGM(ASA),∴S△AEP=S△CGM,EP=MG,
∴S△CFP-S△AEP=S△CFP-S△CGM=S梯形FPMG=(MG+PF) FG=EF FG=S正方形EHGF,
∵S矩形EHGF=S正方形ABCD-4S△AEB=48-4×x(8 x)=2x2-16x+48=-16+48=32,
则S△CFP-S△AEP的值是16;故答案为:16.
【点睛】本题考查了“赵爽弦图”,多边形的面积,勾股定理等知识点,首先要求学生正确理解题意,然后会利用勾股定理和三角形全等的性质解题.
考点3.勾股定理的应用-梯子滑动问题
解题技巧:梯子滑动问题解题步骤:
1)运用勾股定理求出梯子滑动之前在墙上或者地面上的距离;
2)运用勾股定理求出梯子滑动之后在墙上或者地面上的距离;
3)两者相减即可求出梯子在墙上或者地面上滑动的距离。
注意:梯子长度为不变量。
主要题型:常见题型有梯子滑动、绳子移动等题型。
例1.(2022·江苏八年级月考)如图,一架25米长的梯子斜靠在一竖直的墙上,梯子底端离墙有7米.(1)求梯子靠墙的顶端距地面有多少米?(2)小燕说“若梯子的顶端沿墙下滑了4米,那么梯子的底端在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.
【答案】(1)24米;(2)不正确,理由见解析.
【分析】(1)利用勾股定理,即可求出答案;(2)由题意,先求出,,,然后利用勾股定理求出,即可得到答案.
【详解】解:(1)如图,
由题意得,,∴∴即顶端距地面有24米
(2)她的说法不正确;由题意得,,,
∴,∴,∴,
∴梯子水平滑动了8米,∴她的说法不正确.
【点睛】此题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合思想的应用.
变式1.(2022·江苏八年级期中)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.
【答案】2.2米
【分析】先根据勾股定理求出的长,同理可得出的长,进而可得出结论.
【详解】解:在中,,米,米,
.在△中,,米,,
,,,米,米,
答:小巷的宽度为2.2米.
【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
变式2.(2022·吉林九台·八年级期末)如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从移动到,同时小船从移动到,且绳长始终保持不变.、、三点在一条直线上,.回答下列问题:(1)根据题意可知: (填“>”、“<”、“=”).
(2)若米,米,米,求小男孩需向右移动的距离(结果保留根号).
【答案】(1)=;(2)小男孩需向右移动的距离为米.
【分析】(1)根据男孩拽绳子前后始终保持不变即可得;
(2)由勾股定理分别求出AC,BC的长,然后根据(1)中结论求解即可.
【详解】解:(1)∵AC的长度是男孩拽之前的绳长,是男孩拽之后的绳长,绳长始终未变,∴,故答案为:=;
(2)∵A、B、F三点共线, ∴在中,,
∵,∴在中,,
由(1)可得:,∴,∴小男孩需移动的距离为米.
【点睛】题目主要考查勾股定理的应用,理解题意,熟练运用勾股定理是解题关键.
变式3.(2022·浙江·八年级期中)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度,他们进行了如下操作:①测得的长为15米(注:);②根据手中剩余线的长度计算出风筝线的长为25米;③牵线放风筝的小明身高1.7米.
(1)求风筝的高度.(2)过点D作,垂足为H,求的长度.
【答案】(1)风筝的高度为21.7米 (2)的长度为9米
【分析】(1)在中由勾股定理求得CD的长,再加上DE即可;
(2)利用等积法求出DH的长,再在在中由勾股定理即可求得BH的长.
【解析】(1)在中,由勾股定理,得:(米),
所以(米),答:风筝的高度为21.7米.
(2)由等积法知:,解得:(米).
在中,(米),答:的长度为9米.
【点睛】本题考查了勾股定理的实际应用,正确运用勾股定理是关键,注意计算准确.
考点4.勾股定理的应用-风吹草动和折竹抵地问题
解题技巧:风吹莲动问题解题步骤:
1)根据问题设出“水深”或者“莲花”的高度;
2)根据题目条件表示出题目中涉及的直角三角形的另外两条边长;
3)根据勾股定理列方程求解。
折竹抵地问题解题步骤:
1)根据问题设出“竹子”折断之前或者折断之后距离地面的高度;
2)根据题目条件表示出题目中涉及的直角三角形的另外两条边长;
3)根据勾股定理列方程求解。
注意:1)“莲花”高度为不变量。2)“竹子”高度为不变量。
主要题型:常见题型有莲花、芦苇、吸管、筷子、有竹子、风筝线、旗杆绳等题型。
例1.(2022成都市八年级月考)《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=_____尺.
【答案】4
【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(9﹣x)尺,利用勾股定理构造方程解方程即可.
【详解】解:设竹子折断处离地面x尺,则斜边为(9﹣x)尺,
根据勾股定理得:x2+32=(9﹣x)2解得:x=4,答:折断处离地面的高度为4尺.故答案为:4.
【点睛】本题考查勾股定理的应用,将实际问题转化为数学问题,依据勾股定理构造方程是解题关键.
变式1.(2023·浙江·八年级期末)如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇生长在它的中央,高出水面的部分为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部恰好碰到岸边的,则这根芦苇的长度是______尺.
【答案】13
【分析】设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.
【详解】解:设芦苇长AB=AB′=x尺,则水深AC=(x-1)尺,
因为底面是边长为10尺的正方形,所以B'C=5尺
在Rt△AB'C中,52+(x-1)2=x2,解之得x=13,即芦苇长13尺.故答案为:13.
【点睛】此题主要考查了勾股定理的应用,熟悉数形结合的解题思想是解题关键.
变式2.(2022·河南八年级期末)我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即尺,秋千踏板离地的距离就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
【答案】14.5
【分析】设秋千的绳索长为x尺,由题意知:OC=x-(5-1)=(x-4)尺,CP′=10尺,OP′=x尺,根据勾股定理列方程即可得出结论.
【详解】解:设秋千的绳索长为x尺,由题意知:OC=x-(5-1)=(x-4)尺,CP′=10尺,OP′=x尺,
在Rt△OCP′中,由勾股定理得:(x-4) +10 =x ,解得:x=14.5,故答案为:14.5.
【点睛】本题主要考查了勾股定理的应用,由勾股定理建立方程是解题的关键.
变式3.(2022·西安八年级月考)如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿竖直插到水底,此时竹竿离岸边点C处的距离米.竹竿高出水面的部分长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度为(  )
A.1.5米 B.1.7米 C.1.8米 D.0.6米
【答案】A
【分析】设BD的长度为xm,则AB=BC=(x+0.2)m,根据勾股定理构建方程即可解决问题.
【详解】解:设BD的长度为xm,则AB=BC=(x+0.2)m,
在Rt△CDB中,0.82+x2=(x+0.2)2,解得x=1.5.故选:A.
【点睛】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.
考点5.勾股定理的应用-台风(噪音)和爆破问题
解题技巧:台风(噪音)、爆破问题解题步骤:
1)根据勾股定理计算爆破点或台风中心到目的地的最短距离;
2)将计算出的最短距离跟爆破或台风的影响范围的半径作比较;
3)若最短距离大于影响半径则不受影响,若最短距离小于半径则受影响。
注意:通常会用到垂线段最短的原理。
主要题型:常见题型有爆破、台风(爆破)等题型。
例1.(2022·辽宁八年级期末)今年的气候变化很大,极端天气频繁出现.某沿海城市气象台监测到台风中心位于正东方向的海上.如图所示,城市所在地为A,台风中心O正以每小时的速度向北偏西60°的方向移动,经监测得知台风中心的范围内将会受台风影响,.该城市是否受到这次台风的影响?若不受影响,请说明理由;若受到这次台风影响,请求出遭受这次台风影响的时间.
【答案】受影响,6小时
【分析】过点A作,在Rt△ACO中,根据直角三角形的性质求得AC=160,与200比较作答即可;以A为圆心,以200米长为半径画弧交BO于D、G两点,则A城受台风影响的距离为DG的长;在Rt△ACD中,根据勾股定理求出CD,同理求得CG,结合台风的风速即可解出A城受台风影响的时间.
【详解】解:如图,过点A作于点C,
由题得,,∴,
∵,∴会受到台风影响. 以A为圆心,以200米长为半径画弧交OB与D、G两点,
∴AD=AG=200千米,在Rt△ADC中,DA=200千米,AC=160千米,
由勾股定理得,(千米),同理可得CG=120,则DG=240千米,
∴A城遭受台风影响的时间是:t=240÷40=6(小时).
【点睛】本题考查勾股定理,速度与时间的关系,解题的关键是作出合适的辅助线.
变式1.(2022·贵州六盘水·八年级期中)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A,B的距离分别为:,以台风中心为圆心周围以内为受影响区域.
(1)请计算说明海港C会受到台风的影响;(2)若台风的速度为,则台风影响该海港持续的时间有多长?
【答案】(1)计算见解析;(2)台风影响该海港持续的时间为7小时
【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【详解】解:(1)如图,过点C作于点D
∵∴∴是直角三角形
∴∴∴
∵以台风中心为圆心周围以内为受影响区域∴海港C会受台风影响;
(2)当时,
台风在上运动期间会影响海港C
在中
在中∴
∵台风的速度为20千米/小时∴(小时)
答:台风影响该海港持续的时间为7小时.
【点睛】本题考查了勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.
变式2.(2022·成都七中八年级期中)如图,在甲村到乙村的公路一旁有一块山地正在开发.现A处需要爆破,已知点A与公路上的停靠站B,C的距离分别为400 m和300 m,且ACAB.为了安全起见,如果爆破点A周围半径260 m的区域内不能有车辆和行人,问在进行爆破时,公路BC段是否需要暂时封闭?为什么
【答案】需要封闭,理由见解析
【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.
【详解】解:过作于
所以进行爆破时,公路BC段需要暂时封闭.
【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.
变式3.(2023·河南周口市·八年级期中)小王与小林进行遥控赛车游戏,终点为点,小王的赛车从点出发,以米/秒的速度由西向东行驶,同时小林的赛车从点出发,以米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于米时,遥控信号会产生相互干扰,米,米,
(1)出发秒钟时,遥控信号是否会产生相互干扰?
(2)当两赛车距点的距离之和为米时,遥控信号是否会产生相互干扰?
【答案】(1)出发三秒钟时,遥控信号不会产生相互干扰;(2)当两赛车的距离之和为米时,遥控信号将会产生干扰.
【分析】(1)根据题意求得米,米,得到 米,米,根据勾股定理即可得到结论;(2)设出发秒钟时,遥控信号将会产生相互干扰,根据题意列方程即可得到结论.
【详解】解:(1)出发秒钟时,米,米
米,米米,米(米)
出发三秒钟时,遥控信号不会产生相互干扰
(2)设出发秒钟时,两赛车距 A 点的距离之和为 35 米,
由题意得,,解得
此时AC1=20,AB1=15,此时
即两赛车间的距离是25米,所以遥控信号将会受到干扰
答:当两赛车的距离之和为米时,遥控信号将会产生干扰.
【点睛】本题考查了解直角三角形的应用,熟练掌握勾股定理是解题的关键.
考点6.勾股定理的应用-位置问题(航行和信号塔)
解题技巧:航行问题解题步骤:
1)根据航行的方位角或勾股定理逆定理判定直角三角形;
2)根据航行速度和时间表示出直角三角形两直角边长;
3)根据勾股定理列方程求解航行角度、速度或距离。
信号塔、中转站题型解题步骤:
1)根据问题设出未知量(一般情况下求谁设谁),并根据设出的未知量表示出两个直角三角形的直角边长;2)在两个直角三角形中分别用勾股定理表示出斜边长;3)根据斜边长相等建立方程求解。
注意:1)轮船航行的题目要注意两船终点之间的距离通常为直角三角形的斜边长;
2)信号塔和中转站等题型要注意两个目的地到信号塔或中转站的距离是相等的。
主要题型:常见题型有轮船航行、信号塔、中转站等题型。
例1.(2023·山东八年级期末)如图,笔直的公路上A、B两点相距22km,C、D为公交公司两停车场,CA⊥AB于点A,DB⊥AB于点B,已知CA=6km,DB=16km,现在要在公路的AB段上建一个加油站M,使得C、D公交公司两停车场到加油站M的距离CM=DM,则加油站M应建在离B点多远处?
【答案】6km
【分析】根据CM=DM,CA⊥AB于点A,DB⊥AB于点B,可得∠A =∠B=90°,由勾股定理得AC2+AM2=BM2+BD2,设BM=xkm,AM=(22-x)km, 可得方程,解之即可.
【详解】解:∵使得C、D公交公司两停车场到加油站M的距离相等,∴CM=DM,
∵CA⊥AB于点A,DB⊥AB于点B,∴∠A =∠B=90°,
∴AC2+AM2=CM2,BM2+BD2=MD2,∴AC2+AM2=BM2+BD2,
设BM=xkm,AM=(22-x)km,CA=6km,DB=16km,
∴,解得,
加油站M应建在离B点6km远.
【点睛】本题考查勾股定理应用,拓展一元一次方程,掌握勾股定理使用条件,一元一次方程的解法是解题关键.
变式1.(2022·重庆·八年级期中)如图,某港口O位于南北延伸的海岸线上,东面是大海.远洋号、长峰号两艘轮船同时离开港O,各自沿固定方向航行,“远洋”号每小时航行12海里,“长峰”号每小时航行16海里,它们离开港口1小时后,分别到达A,B两个位置,且AB=20海里,已知“远洋”号沿着北偏东60°方向航行,请判断“长峰”号航行的方向,并说明理由.
【答案】南偏东30°,理由见解析.
【分析】由题意得: OA2+OB2=AB2,由勾股定理的逆定理得出△OAB是直角三角形,∠AOB=90°,求出∠DOB=30°,即可得出答案.
【详解】解:“长峰”号航行的方向是南偏东30°.理由是:
由题意得:OA=12,OB=16,AB=20,
∵122+162=202,∴OA2+OB2=AB2.
∴△OAB是直角三角形,∴∠AOB=90°.
∵∠COA=60°,∴∠DOB=180°﹣90°﹣60°=30°,
∴“长峰”号航行的方向是南偏东30°.
【点睛】此题考查了勾股定理的逆定理及方向角的理解与运用,利用勾股定理的逆定理得出△OAB为直角三角形是解题的关键.
变式2.(2022·河南·八年级阶段练习)我国在防控新冠疫情上取得重大成绩,但新冠疫情在国外开始蔓延,为了防止境外输入病例的增加,我国暂时停止了一切国际航班、水运.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我国海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡航艇的航向为北偏西.
(1)求甲巡逻艇的航行方向(用含n的式子表示);(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?
【答案】(1);(2)海里
【分析】(1)先用路程等于速度乘以时间计算出,的长,利用勾股定理的逆定理得出三角形为直角三角形,再利用在直角三角形中两锐角互余求解;
(2)分别求得甲、乙航行3分钟的路程,然后由勾股定理来求甲乙的距离.
【详解】解:(1)(海里),(海里),
又AB=13海里所以,
所以是直角三角形, 所以
由已知得,所以,所以甲的航向为北偏东,
(2)甲巡逻船航行3分钟的路程为(海里)
乙甲巡逻船航行3分钟的路程为(海里)
所以3分钟后甲、乙两艘巡逻船相距为:(海里).
【点睛】此题主要考查了直角三角形的判定、勾股定理及方向角的理解及运用,难度适中.利用勾股定理的逆定理得出三角形为直角三角形是解题的关键.
变式3.(2022·江西赣州·八年级期中)为了丰富少年儿童的业余生活,某社区要在如图中所在的直线上建一图书馆,本社区有两所学校,分别在点和点处,于点,于点.已知,,.问:图书室应建在距点多少米处,才能使它到两所学校的距离相等?
【答案】10km
【分析】设AE=x,然后用x表示出BE的长,进而可在两个直角三角形中,由勾股定理表示出CE、DE的长,然后列方程求解.
【详解】解:设AE=xkm,则BE=(25-x)km,
在Rt△ACE中,由勾股定理得:CE2=AE2+AC2=x2+152,
同理可得:DE2=BE2+BD2=(25-x)2+102,
若CE=DE,则AE2+AC2=BE2+BD2,
x2+152=(25-x)2+102,解得:x=10km;
答:图书室E应该建在距A点10km处,才能使它到两所学校的距离相等.
【点睛】此题主要考查的是勾股定理的应用,根据CE=DE得出AC2+AE2=BE2+DB2是解题关键.
考点7. 勾股定理的应用-速度问题(超速问题)
解题技巧:速度问题解题步骤:1)根据勾股定理计算行驶的距离;2)根据行驶距离和时间求出实际行驶速度;3)比较实际行驶速度和规定速度。
注意:要将速度统一单位后再进行比较。
只要题型:常见题型有汽车超速等题型。
例1.(2022·浙江·八年级课时练习)《九章算术》中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇.根据勾股定理可列得方程为______.
【答案】
【分析】设甲、乙二人出发后相遇的时间为x ,然后利用勾股定理列出方程即可.
【详解】解:设经 x秒二人在C处相遇,这时乙共行 AC =3x,甲共行AB +BC =7x,
∵AB =10,∴ BC =7x -10,又 ∵∠A =90°,∴BC2= AC2 + AB2,
∴(7x -10)2=(3x)2+102,故答案是:(7x -10)2= (3x)2+102.
【点睛】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.
变式1.(2022·山东平邑县八年级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方50米处的C点,过了6秒后,测得小汽车所在的B点与车速检测仪A之间的距离为130米.(1)求BC间的距离;(2)这辆小汽车超速了吗?请说明理由.
【答案】(1)120米;(2)超速,理由见解析
【分析】(1)根据勾股定理求出BC的长;(2)直接求出小汽车的时速,进而比较得出答案.
【详解】解:(1)在Rt△ABC中,∵AC=50m,AB=130m,且AB为斜边,
根据勾股定理得:BC=120(m);
(2)这辆小汽车超速了.
理由:∵120÷6=20(m/s),平均速度为:20m/s,
20m/s=72km/h,72>70,∴这辆小汽车超速了.
【点睛】此题主要考查了勾股定理的应用,利用勾股定理求出BC的长是解题关键.
变式2.(2022·辽宁大石桥八年级月考)如图,,,,一机器人在点B处看见一个小球从点A出发沿着方向匀速滚向点,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC为__________.
【答案】5m
【分析】由题意根据小球滚动的速度与机器人行走的速度相等,得到BC=AC,设BC=AC=xm,根据勾股定理求出x的值即可.
【解析】解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,
设BC=AC=xm,则OC=(9-x)m,在Rt△BOC中,∵OB2+OC2=BC2,∴32+(9-x)2=x2,
解得x=5.故答案为:5m.
【点睛】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.
变式3.(2023·河南·郑州八年级阶段练习)如图,校园内有两棵树,相距8m,一棵树高13m,另一棵树高7m,一只小鸟从一棵树顶端飞到另一棵树的顶端,小鸟至少要飞(  )
A.9m B.10m C.11m D.12m
【答案】B
【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
【详解】解:两棵树高度相差为AE=13-7=6m,之间的距离为BD=CE=8m,即直角三角形的两直角边,故斜边长AC=m,即小鸟至少要飞10m.故选B
【点睛】本题主要是将小鸟的飞行路线转化为求直角三角形的斜边,利用勾股定理解答即可.
考点8 勾股定理及逆定理的相关计算
例1.(2022·江西八年级期中)如图,在中,,,,的垂直平分线分别交、于点,.(1)求的长度;(2)求的长.
【答案】(1)15;(2)
【分析】(1)根据勾股定理即可得到结论;
(2)设,则AE=12-x,根据勾股定理列方程,即可得到结论.
【详解】解:(1)在中,∵,,,∴.
(2)∵垂直平分,∴,设,则,
在中,∵,∴,解得.∴.
【点睛】本题考查线段垂直平分线的性质,勾股定理,熟练掌握线段垂直平分线的性质是解题的关键.
变式1.(2023·安徽八年级期末)如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.
【答案】(1)见解析;(2)2.8.
【分析】(1)连接BE,依据DE垂直平分AB,即可得到AE=BE,再根据AE2﹣CE2=BC2,可得BE2﹣CE2=BC2,进而得到△BCE是直角三角形;(2)依据勾股定理可得BE的长为10,再根据勾股定理即可得到方程,解方程即可得出CE的长.
【详解】解:(1)如图所示,连接BE,
∵D是AB边的中点,DE⊥AB于点D,∴DE垂直平分AB,∴AE=BE,
又∵AE2﹣CE2=BC2,∴BE2﹣CE2=BC2,∴△BCE是直角三角形,且∠C=90°;
(2)Rt△BDE中,∴AE=10,
设CE=x,则AC=10+x,而AB=2BD=16,Rt△ABC中,BC2=AB2﹣AC2=
Rt△BCE中,BC2=EB2﹣EC2=∴解得x=2.8,∴CE=2.8.
【点睛】本题主要考查了线段垂直平分线的性质,勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.
变式2.(2023·河南八年级期末)如图,已知等腰△ABC的底边BC=17cm,D是腰BA延长线上一点,连接CD,且BD=15cm,CD=8cm.(1)判断△BDC的形状,并说明理由;(2)求△ABC的周长.
【答案】(1)直角三角形,理由见解析;(2)
【分析】(1)根据勾股定理的逆定理得出答案即可;
(2)设AB=AC=xcm,在Rt△ADC中根据勾股定理求出AC,再求出△ABC的周长即可.
【详解】解:(1)△BDC是直角三角形,
理由是:∵BC=17cm,BD=15cm,CD=8cm,
∴BD2+CD2=BC2,∴∠D=90°,即△BDC是直角三角形;
(2)设AB=AC=xcm,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,
即(15﹣x)2+82=x2,解得:x=,∴AB=AC=(cm),
∵BC=17cm,∴△ABC的周长=AB+AC+BC=+17=(cm).
【点睛】本题考查了勾股定理和勾股定理的逆定理,熟记勾股定理的逆定理是解此题的关键.
变式3.(2022·江苏)如图,在中,,,,的垂直平分线交于点D,交于点E,连接.(1)求的长.(2)求的长.
【答案】(1)5;(2)
【分析】(1)根据勾股定理求出AB,根据线段垂直平分线的定义求出AD;
(2)连接BE,用未知数表示出EC,BE的长,再利用勾股定理得出EC的长,进而得出答案.
【详解】解:(1)在Rt△ABC中,∠C=90°,BC=6,AC=8.根据勾股定理得:AB==10,∵DE是AB的垂直平分线,∴AD=AB=5;
(2)连接BE,
∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8 x,
∴在Rt中, 62+x2=(8 x)2,解得:x=,∴AE=8 =,
在Rt中,DE=.
【点睛】本题主要考查垂直平分线的性质、勾股定理,添加辅助线,构造直角三角形,利用勾股定理列出方程,是解题的关键.
考点9. 网格中的勾股定理
解题技巧:网格中,根据勾股定理,可求解出三角形或四边形的长度,然后根据长度判断多边形是否是特殊图形。
例1.(2022·陕西九年级)如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,于点D,则AD的长为( )
A.1 B.2 C. D.
【答案】B
【分析】根据勾股定理计算BC的长,再利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.
【详解】解:由勾股定理得:,
∵,∴,∴,故选:B.
【点睛】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.
变式1.(2022·安徽八年级期末)如图,在正方形网格中,每个小正方形的边长为是网格上的格点三角形,则它的边上的高等于_______.
【答案】
【分析】如图,过点B作BD⊥AC于D,先利用勾股定理求出,再利用三角形的面积计算公式即可求得边上的高.
【详解】解:如图,过点B作BD⊥AC于D,由勾股定理得,
∵,
∴,∴,解得;故答案为:.
【点睛】本题考查了勾股定理与网格问题,三角形的面积公式,解题的关键是熟练掌握所学的知识,正确求出AC的长度.
变式2.(2022·山西初二期末)如图,在正方形网格中,每个小正方形的边长都为,点在小正方形的格点上,连接,则________.
【答案】45
【分析】连接用勾股定理求解 证明为等腰直角三角形,从而可得答案.
【解析】解:如图,连接 由勾股定理得:
为等腰直角三角形,
故答案为:
【点睛】本题考查的是勾股定理的应用,勾股定理的逆定理的应用,掌握以上知识是解题的关键.
变式3.(2022·西安市黄河中学八年级月考)如图,网格中的每个小正方形的边长为1,四边形的顶点A,B,C,D都在格点上,则下面4条线段长度为的是(  )
A.AB B.BC C.CD D.AD
【答案】D
【分析】根据勾股定理求得每条线段的长度即可.
【详解】解:AB=,BC=3,CD=,AD=,
故长度为的线段是AD,故选:D.
【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
考点10 .勾股数与直角三角形的判定
解题技巧:常见勾股数有:(3,4,5);(6,8,10);(5,12,13);
勾股数组规律:(n2﹣1)2+(2n)2=(n2+1)2
例1.(2023·湖北八年级期中)世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为a=(m2﹣n2),b=mn,c=(m2+n2),其中m,n(m>n)是互质的奇数,则a,b,c为勾股数.
我们令n=1,得到下列顺序排列的等式:①32+42=52,②52+122=132,③72+242=252,④92+402=412,…
根据规律写出第⑥个等式为 ______________.
【答案】132+842=852
【分析】通过观察可知,所列出的等式都符合勾股定理公式,在观察各底数的特点,找到规律即可得出第⑥个等式.
【详解】解:∵3=2×1+1,5=2×2+1,7=2×3+1,9=2×4+1,
∴第一个数的底数是2n+1,指数是2,
∵4=2×12+2×1,12=2×22+2×2,24=2×32+2×3,40=2×42+2×4,
∴第二个数的底数是2n2+2n,指数是2,
∵第三个数的底数比第二个数的底数大1,指数是2,
∴第n个等式为(2n+1)2+(2n2+2n)2=(2n2+2n+1)2,
∴第⑥个等式为132+842=852,故答案为:132+842=852.
【点睛】本题主要考查了整式的数字规律,解题的关键在于能够根据题意得到每一组数据的规律.
变式1.(2023·南宁市八年级月考)可以构成直角三角形三条边长的三个正整数a,b,c,称为勾股数世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数公式为其中m>n>0,m、n是互质的奇数,当n=1时,则有一边长为13的直角三角形的另外两条边长为___.
【答案】5,12或84,85.
【分析】利用分类思想,整数的性质求解即可.
【详解】当n=1时,得,
当a=13时,得=13,即,解得m=,
∵m是正整数,∴m=舍去;
当b=13时,即m=13,得a==84,c==85;
当c=13时,得=13,即,解得m=,
∵m是正整数,∴m= -5舍去,∴m= 5,
∴a==12,∴b= 5,故答案为:5,12或84,85.
【点睛】本题考查了勾股数,熟练运用分类思想,整数的性质是解题的关键.
变式2.(2023·山西初三一模)阅读下列内容,并解决问题.一道习题引发的思考
小明在学习《勾股定理》一章内容时,遇到了一个习题,并对有关内容进行了研究;
习题再现:古希腊的哲学家柏拉图曾指出,如果表示大于1的整数,,,,那么,,为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗? 资料搜集:
定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边长,,都是正整数,且满足,那么,,称为一组勾股数.
关于勾股数的研究:我囯西周初数学家商高在公元前1000年发现了“勾三,股四,弦五”,这组数是世界上最早发现的一组勾股效,毕达哥拉斯学派、柏拉图学派、我国数学家刘徽、古希腊数学家丢番图都进行过勾股数的研究.习题中的表达式是柏拉图给出的勾股数公式,这个表达式未给出全部勾股数,世界上第一次给出勾股数通解公式的是《九幸算术),其勾股数公式为:,,,其中,,是互质的奇数.(注:,,的相同倍数组成的一组数也是勾股数)
问题解答:(1)根据柏拉图的研究,当时,请直接写出一组勾股数;(2)若表示大于1的整数,试证明是一组勾股数;(3)请举出一个反例(即写出一组勾股数),说明柏拉图给出的勾股数公式不能构造出所有的勾股数.
【答案】(1)(12,35,37);(2)见解析;(3)反例:(5,12,13)
【分析】(1)把直接代入,,即可求解;(2)利用勾股定理的逆定理即可证明结论;(3)柏拉图给出的勾股数公式不能构造出5、12、13这组勾股数.
【解析】 (1)把直接代入,,得
,,,故答案为:(12,35,37);
(2)∵表示大于1的整数,∴,,都是正整数,且是最大边,
∵,
∴,即,,为勾股数;
(3)当时,勾股数为(3,4,5);当时,勾股数为(8,6,10);
当时,勾股数为(15,8,17);(5,12,13)是勾股数,而柏拉图给出的勾股数公式不能构造出.
【点睛】本题考查了勾股数以及勾股定理的逆定理,解题的关键是弄清题意,理解勾股数的意义.
模块4:同步培优题库
全卷共25题 测试时间:90分钟 试卷满分:120分
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022·广西贵港·八年级期末)下列条件:①;②,,;③;④.其中能判定是直角三角形的有( )
A.4个 B.3个 C.2个 D.1个
【答案】A
【分析】由直角三角形的定义,只要验证最大角是否是;由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.
【详解】①,,能判定是直角三角形;
②,∴,能判定是直角三角形;
③,,,能判定是直角三角形;
④,,,能判定是直角三角形;
综上所述,能判定是直角三角形的有4个.故选:A.
【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.也考查了三角形内角和定理.
2.(2022·浙江八年级专题练习)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是( )
A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13
【答案】A
【分析】最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.
【详解】解:由题意可得:a的最小长度为饮料罐的高,即为12,
当吸管斜放时,如图,此时a的长度最大,即为AB,
∵下底面半径是5,∴AB==13,∴a的取值范围是12≤a≤13,故选A
【点睛】本题考查正确运用勾股定理.主要运用勾股定理求得a的最大值,此题比较常见,难度不大.
3.(2022·河南信阳·八年级期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为(   ).
A.2.4m B.2.5m C.2.6m D.2.7m
【答案】D
【分析】在Rt△ABC中,利用勾股定理计算出AB长,再在Rt△A′BD中利用勾股定理计算出BD长,然后可得CD的长.
【详解】解:在Rt△ABC中,AB==2.5m,∴A′B=2.5m,
在Rt△A′BD中,BD==2m,∴CD=BC+BD=2+0.7=2.7m,故选:D.
【点睛】本题考查了勾股定理的应用,关键是掌握利用勾股定理求有关线段的长度的方法.
4.(2023·浙江.八年级期中)《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少 若设门对角线长为x尺,则可列方程为( )
A. B. C. D.
【答案】A
【分析】根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】解:根据勾股定理可得:x2=(x-4)2+(x-2)2,故选:A.
【点睛】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的
关键,难度一般.
5.(2022·河南·八年级期末)学习了勾股定理之后,老师给大家留了一个作业题,小明看了之后,发现三角形各边都不知道,无从下手,心中着急.请你帮助一下小明.如图,的顶点,,在边长为1的正方形网格的格点上,于点,则的长为(  )
A. B. C. D.
【答案】C
【分析】由勾股定理求出AC=5,再由等面积法求出BD即可.
【详解】解:由勾股定理得:,
∵BD⊥AC, ∴△ABC的面积=, ∴BD=, 故选:C.
【点睛】本题考查勾股定理以及三角形面积的计算,熟练掌握勾股定理及等面积法的应用是解题关键.
6.(2022·浙江·八年级期末)如图,在中,以AC为直角边向外作,分别以AB,BC,CD,DA为直径向外作半圆,面积分别记为S1,S2,S3,S4,已知,,,则S4为( )
A.2 B.3 C. D.
【答案】B
【分析】以AB,BC,CD,DA为直径向外作半圆的面积分别为S1,S2,S3,S4,再分别用含AB、BC、CD、AD的式子表示S1,S2,S3,S4,结合 可得S1+S2=S3﹣S4,从而可得答案.
【详解】解:∵以AB,BC,CD,DA为直径向外作半圆的面积分别为S1,S2,S3,S4,
∴,,
∴,

∵∠ABC=∠CAD=90°,∴
∴,∴S1+S2=S3﹣S4,
∵S1=3,S2=1,S3=7,∴3+1=7﹣S4,∴S4=3,故选:B.
【点睛】本题考查的是勾股定理的应用,利用勾股定理建立面积之间的关系是解题的关键.
7.(2022·浙江·八年级课时练习)如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a,b,斜边为c)与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则的值为( )
A.68 B.89 C.119 D.130
【答案】B
【分析】利用含a,b,c表示出大正方形和小正方形的面积,由两式相减可求得,再对利用完全平方公式进行变形即可求得答案.
【详解】解:大正方形的面积为:,
小正方形的面积为:,由得,,即,
,故选B.
【点睛】本题考查了勾股定理的应用、已知等式的值求多项式的值的问题。正方形的面积公式,把多项式化为已知多项式形的形式是解题的关键.
8.(2022·山东八年级期末)如图,在△ABC中,CE平分∠ACB,CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,若CM=4,则CE2+CF2的值为(  )
A.8 B.16 C.32 D.64
【答案】D
【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE2+CF2=EF2,即可得出结果.
【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,
即∠ECF=(∠ACB+∠ACD)=90°,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,
由勾股定理得:CE2+CF2=EF2=64,故选:D.
【点睛】本题考查角平分线的定义、勾股定理、直角三角形的判定;熟练掌握勾股定理,证明三角形是直角三角形是解决问题的关键.
9.(2022·山东菏泽·八年级阶段练习)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为的半圆,其边缘.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )m.(取3)
A.30 B.28 C.25 D.22
【答案】C
【分析】根据题意画出侧面展开图,作点C关于AB的对称点F,连接DF,根据半圆的周长求得,根据对称求得,在Rt△CDF中,勾股定理求得.
【详解】其侧面展开图如图:作点C关于AB的对称点F,连接DF,
∵中间可供滑行的部分的截面是半径为2.5cm的半圆,
∴BC=πR=2.5π=7.5cm,AB=CD=20cm,∴CF=2BC=15cm,
在Rt△CDF中,DF=cm,故他滑行的最短距离约为cm.故选C.
【点睛】本题考查了勾股定理最短路径问题,作出侧面展开图是解题的关键.
10.(2022·重庆九龙坡·八年级期末)我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c能表示为两个正整数a,b的平方和,即,那么称a,b,c为一组广义勾股数,c为广义斜边数,则下面的结论:①m为正整数,则3m,4m,5m为一组勾股数;②1,2,3是一组广义勾股数;③13是广义斜边数;④两个广义斜边数的和是广义斜边数;⑤若,其中k为正整数,则a,b,c为一组勾股数;⑥两个广义斜边数的积是广义斜边数.依次正确的是( )
A.①②③ B.①②④⑤ C.③④⑤ D.①③⑤
【答案】D
【分析】根据题目中所给的勾股数.广义勾股数,广义斜边数的定义,分析选项找出结论正确的即可.
【详解】解:由题意可知:①m为正整数,则3m,4m,5m为一组勾股数;结论正确;
②1,2,3是一组广义勾股数;∵,∴不满足,不能成为广义勾股数,故结论不正确;③13是广义斜边数;∵,∴结论正确;
④两个广义斜边数的和是广义斜边数;例如,,但是7不是广义斜边数,故结论不正确;⑤若,其中k为正整数,则a,b,c为一组勾股数;∵,,满足:,故结论正确;⑥两个广义斜边数的积是广义斜边数.例如,但是4不是广义斜边数,故结论不正确;故正确的结论为:①③⑤.故选:D
【点睛】本题考查勾股数.广义勾股数,广义斜边数的定义,解题的关键是理解题意,根据题干中的定义解答.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·湖北省崇阳县八年级期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile,“海天”号每小时航行12nmile,它们离开港口一个半小时后相距30nmile,且知道“远航”号沿东北方向航行,那么“海天”号航行的方向是_______.
【答案】西北方向
【分析】根据路程=速度×时间分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.
【详解】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).
∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.
由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,
即“海天”号沿西北方向航行故答案为:西北方向.
【点睛】此题主要是能够根据勾股定理的逆定理发现直角三角形.
12.(2022·山东滨州·八年级期末)如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则四边形ABCD的面积为 _____.
【答案】36
【分析】先根据勾股定理求出BD的长度,再根据勾股定理的逆定理判断出△ABD的形状,再利用三角形的面积公式求解即可.
【详解】解:连接BD,如图所示:
∵∠C=90°,CD=4,BC=3,∴BD===5,
∵在△ABD中,AB2+BD2=144+25=169=132=AD2,∴△ABD是直角三角形,
∴S四边形ABCD=AB BD+BC CD=×12×5+×3×4=36故答案为:36.
【点睛】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ABD的形状,是解答此题的关键.
13.(2022·内蒙古鄂尔多斯·中考真题)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=,则AB的长是 _____.
【答案】12
【分析】延长BE交AD于点F,由“ASA”可证△BCE≌△FDE,可得DF=BC=5,BE=EF,由勾股定理可求AB的长.
【详解】如图,延长BE交AD于点F,
∵点E是DC的中点,∴DE=CE,∵AB⊥BC,AB⊥AD,∴AD∥BC,
∴∠ D=∠BCE,∠FED=∠BEC,∴ △BCE≌△FDE(ASA),
∴DF=BC=5,BE=EF,∴BF=2BE=13,AF=5,
在Rt△ABF中,由勾股定理可得AB=12.故答案为:12.
【点睛】本题考查了全等三角形的判定和性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.
14.(2022·河南洛阳·八年级期末)如图,在中,,,是边上的中线,且,则的长为________.
【答案】
【分析】首先证明△ABD≌△ECD,推出EC=AB=6,DE=AD=4,由AE2+EC2=AC2,推出△AEC是直角三角形,在Rt△CDE中,求出CD,根据BC=2CD即可解决问题.
【详解】解:延长AD到点E,使DE=AD,连接CE,
在△ADB和△EDC中,,
∴△ABD≌△ECD(SAS),∴EC=AB=6,DE=AD=4,
∵AE=8,AC=10∴AE2+EC2=AC2 ∴△AEC是直角三角形,
∴CD==,∴CB=2CD=.
【点睛】本题考查全等三角形的判定和性质、勾股定理以及勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
15.(2022·广州市八年级期中)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点160米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心,100米为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为36千米/时,则对学校A的噪声影响最大时卡车P与学校A的距离是___米;重型运输卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间是____秒.
【答案】80 12
【分析】作于,求出的长即可解决问题,如图以为圆心m为半径画圆,交于、两点,求出的长,利用时间计算即可.
【详解】解:作于,,m,m,
即对学校的噪声影响最大时卡车与学校的距离m.
如图以为圆心m为半径画圆,交于、两点,
,,在中,m,m,
重型运输卡车的速度为36千米时米秒,重型运输卡车经过的时间(秒,
故卡车沿道路方向行驶一次给学校带来噪声影响的时间为12秒.故答案为:80,12.
【点睛】本题考查勾股定理的应用、解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.
16.(2022·山西初二期末)如图,在正方形网格中,每个小正方形的边长都为,点在小正方形的格点上,连接,则________.
【答案】45
【分析】连接用勾股定理求解 证明为等腰直角三角形,从而可得答案.
【解析】解:如图,连接 由勾股定理得:
为等腰直角三角形,
故答案为:
【点睛】本题考查的是勾股定理的应用,勾股定理的逆定理的应用,掌握以上知识是解题的关键.
17.(2022·贵州九年级)如图,矩形中,,,将矩形绕点顺时针旋转得到矩形,边与交于点,延长交于点,若,则的长为______.
【答案】
【分析】连接,过点作,设,分别解得的长,继而证明,由全等三角形的性质得到,由此解得,最后在中,利用勾股定理解得的值,据此解题.
【详解】如图,连接,过点作,
设,则矩形中
在与中,
在中,
,故答案为:.
【点睛】本题考查旋转变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
18.(2023·江苏无锡·八年级期中)爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是 ______cm
【答案】16
【分析】将正方形沿着翻折得到正方形 ,过点在正方形内部作,使,连接,过作于点,此时最小,运用勾股定理求解即可.
【详解】
如图,将正方形沿着翻折得到正方形 ,过点在正方形内部作,使,连接,过作于点,则四边形是矩形,四边形是平行四边形,∴,,,,
此时最小,
∵点是中点,∴cm,∴cm,cm,
在中,cm,
∴cm,故答案为:16.
【点睛】本题考查最短路径问题,考查了正方形的性质,矩形的性质,平行四边形的性质和判定,勾股定理,轴对称性质等,解题的关键是将立体图形中的最短距离转换为平面图形的两点之间线段长度进行计算.
三、解答题(本大题共7小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2023·苏州高新区九年级月考)如图,在中,,是的平分线,于点E.(1)求证:;(2)若,求线段的长度.
【答案】(1)见解析;(2)3
【分析】(1)已知∠DAC=∠DAE,即可证明△ACD≌△AED,即可解题;
(2)由(1)结论可得∠AED=∠ACD,AE=AC,即可求得BE的长,进而利用勾股定理解答即可.
【详解】解:证明:(1)∵DE⊥AB,∴∠AED=90°,
∵AD平分∠CAB,∴∠DAC=∠DAE,
在△ACD和△AED中,,∴△ACD≌△AED(AAS);
(2)∵Rt△ABC中,AC=6,BC=8,∠C=90°,∴AB2=AC2+BC2=100,∴AB=10,
∵△ACD≌△AED,∴∠AED=∠ACD=90°,AE=AC=6,∴BE=AB-AE=4,
∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,
设DE=CD=x,DB=8-x,在Rt△DEB中,DB2=DE2+BE2,即(8-x)2=x2+42,解得:x=3,∴DE=3.
【点睛】本题考查了全等三角形的判定和性质,考查了全等三角形对应边、对应角相等的性质,本题中求证△ACD≌△AED是解题的关键.
20.(2022·湖南长沙市·八年级期末)如图,每个小正方形的边长都为.
(1)求四边形的面积;(2)证明:.
【答案】(1)12;(2)见解析
【分析】(1)采用割补法进行解答即可;(2)如图:连接AC,运用勾股定理逆定理即可证明.
【详解】解:(1)由题意得四边形ABCD的面积为:;
(2)证明:如图:连接AC

【点睛】本题主要考查了运用割补法求不规则图形的面积、勾股定理的逆定理等知识点,灵活运用勾股定理的逆定理判定三角形是否为直角三角形成为解答本题的关键.
21.(2022·成都市棕北中学八年级月考)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,梯子顶端到地面的距离为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5米.(1)梯子的长是多少?(2)求小巷的宽.
【答案】(1)2.5米;(2)2.7米
【分析】(1)先利用勾股定理求出梯子AB 的长度,
(2)由(1)知梯子AB 的长度,利用勾股定理求出BD的长,即可得到答案.
【详解】(1)在中,∵,米,米,
∴.∴(米).
答:梯子的长是2.5米
(2)在中,∵,米,,
∴,∴.
∵,∴米.∴米.
答:小巷的宽度为2.7米.
【点睛】本题考查了勾股定理的应用,关键是掌握利用勾股定理求有关线段的长度的方法.
22.(2022·浙江·八年级专题练习)由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?
【答案】(1)受影响,理由见解析;(2)15小时
【分析】(1)过点作AC⊥BM,垂足为C,在Rt△ABC中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km比较大小即可判断A城是否受到这次沙尘暴的影响;
(2)如图,设点E、F是以A为圆心,150km为半径的圆与BM的交点,根据勾股定理可以求出CE的长度,也就求出了EF的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.
【详解】解:(1)过点A作AC⊥BM,垂足为C,
在Rt△ABC中,由题意可知∠CBA=30°,∴AC=AB=×240=120,
∵AC=120<150,∴A城将受这次沙尘暴的影响.
(2)设点E,F是以A为圆心,150km为半径的圆与MB的交点,连接AE,AF,
由题意得,,CE=90
∴EF=2CE=2×90=180 180÷12=15(小时)∴A城受沙尘暴影响的时间为15小时.
【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理
解题意,把握好题目的数量关系是解决问题的关键.
23.(2022·广西八年级期中)去年某省将地处,两地的两所大学合并成了一所综合性大学,为了方便,两地师生的交往,学校准备在相距的,两地之间修筑一条笔直公路(即图中的线段),经测量,在地的北偏东60度方向、地的西偏北45度方向处有一个半径为的公园,问计划修筑的这条公路会不会穿过公园?为什么?(参考数据)
【答案】计划修筑的这条公路不会穿过公园.理由见解析
【分析】先过点C作CD⊥AB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案.
【详解】解:如图所示,过点C作CD⊥AB,垂足为点D,
由题意可得∠CAB=30°,∠CBA=45°,
在Rt△CDB中,∠BCD=45°,∴∠CBA=∠BCD,∴BD=CD.
在Rt△ACD中,∠CAB=30°,∴AC=2CD.设CD=DB=x,∴AC=2x.
由勾股定理得AD=.
∵AD+DB=2.732,∴x+x=2.732,∴x≈1.即CD≈1>0.7,
∴计划修筑的这条公路不会穿过公园.
【点睛】本题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角和含30度角的直角三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.
24.(2022·河南濮阳·八年级期末)已知:在中,,点D在直线上,连接,在的右侧作.(1)如图1,①点D在边上,线段和线段数量关系是_________,位置关系是_________;②直接写出线段之间的数量关系_________;
(2)如图2,点D在B右侧.之间的数量关系还成立吗?说明理由;
(3)在(2)的条件下,若.求出的长.
【答案】(1)①BE=AD,BE⊥AD;②AD2+BD2=DE2(2)成立,理由见解析(3)
【分析】(1)①根据已知条件,证明即可求解;②在,根据勾股定理,结合即可求解;(2)连接BE,根据(1)的方法证明即可求解;(3)根据题意勾股定理求得,进而可得,在Rt△BDE中,由勾股定理即可求解.
(1)解:∵∠ACB=∠DCE=90°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∵AC=BC,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠A=∠CBE=45°,
∵∠A+∠ABC=90°,∴∠ABE=∠ABC+∠CBE=90°,∴∠DBE=90°,
在Rt△BDE中,由勾股定理得:BE2+BD2=DE2,∴AD2+BD2=DE2,
故答案为:①BE=AD,BE⊥AD;②AD2+BD2=DE2;
(2)(1)的结论仍成立,理由如下,如图2,连接BE,
∵∠ACB=∠DCE=90°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∵AC=BC,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠A=∠CBE=45°,
∵∠A+∠ABC=90°,∴∠ABE=∠ABC+∠CBE=90°,∴∠DBE=90°,
在Rt△BDE中,由勾股定理得:BE2+BD2=DE2,∴AD2+BD2=DE2,
(3)∵∠ACB=90°,AC=BC=4,∴,∴,∴,在Rt△BDE中,由勾股定理得:∴DE===.
【点睛】本题考查了全等三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.
25.(2022·浙江金华·八年级期末)如图,长方形,点E是上的一点,将沿折叠后得到,且点O在长方形内部.已知,.
(1)如图1,若,求四边形的面积.(2)如图2,延长交于F,连结,将沿折叠,当点D的对称点恰好为点O时,求四边形的面积.(3)如图3,在(2)的条件下,延长交于点G,连结,将沿折叠,当点C的对称点恰好为点O时,求四边形的面积.
【答案】(1)(2)(3)
【分析】(1)根据折叠的性质可得△OBE△ABE,在Rt△ABE中根据含30度角的直角三角形的性质,以及勾股定理求得,进而根据三角形面积公式计算即可;(2)根据折叠的性质可得△OEF≌△DEF,设OF=DF=x,则FC=DC-DF=4-x,BF =BO+OF =4+x, 在Rt△BCF中,根据勾股定理建立方程,求得,进而根据三角形面积公式计算,由S四边形ABFE=SRt△ABE+S△BEF计算得出结果即可;(3)根据折叠的性质可得△CGF≌△OGF,可得,设,则,在中,,根据勾股定理建立方程,求得,进而根据S四边形BEFG=S△BEF+S△BFG计算得出结果即可;
(1)四边形ABCD是长方形,AB=4,

将△ABE沿BE折叠后得到△OBE△OBE△ABE
在Rt△ABE中, AE= BE
=
四边形的面积;
(2)由(1)知△OBE≌△ABE,∴OE = AE, OB = AB = 4,
又∵将△DEF沿EF折叠,点D的对称点恰好点O,
∴△OEF≌△DEF,∴OE = DE,OF = DF,∴OE= AE= DE=AD=,
设OF=DF=x,则FC=DC-DF=4-x,BF =BO+OF =4+x,
在Rt△BCF中,根据勾股定理得,
∴解得x=2.
∴S四边形ABFE=SRt△ABE+S△BEF= × AB×AE+ ×OE× BF
=×4×+××(4+2)=4+6=10.
∴四边形ABFE的面积是;
(3)由(2)知,△OEF≌△DEF∴OF = DF
∵将△CGF沿GF折叠,点C的对称点恰好为点O,
∴△CGF≌△OGF∴OF = FC, ∠FOG = 90°,
∴DF = FC=DC=AB=2,∠BOG =180°-90°= 90°,
设,则∵OB= 4,CB=4,CF =2,
在中,解得即OG=
∴S四边形BEFG=S△BEF+S△BFG=×OE×BF+×OG×BF
=××(4+2)+ ××(4+2)= ∴四边形BEFG的面积是
【点睛】本题考查折叠与勾股定理,含30度角的直角三角形的性质,掌握折叠的性质是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题2.7 探索勾股定理
模块1:学习目标
1.掌握勾股定理,会用勾股定理解决简单的几何问题.
2.掌握勾股定理定理,会用上述定理判定一个三角形是不是直角三角形.
模块2:知识梳理
1、勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.
要点: (1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
2、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
3、勾股定理的逆定理
如果三角形的三条边长,满足,那么这个三角形是直角三角形.
要点:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.
模块3:核心考点与典例
考点1.勾股树与面积问题再探究
解题技巧:解决此类问题要熟练运用勾股定理,结合正方形、三角形、半圆的面积公式即可解决问题.
例1.(2022·河南八年级期末)如图,正方形的边长为2,其面积标记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为,…按照此规律继续下去,则的值为( )
A. B. C. D.
变式1.(2022·云南九年级一模)如图是按照一定规律“生长”的“勾股树”:
经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,……,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是( )
A.12 B.32 C.64 D.128
变式2.(2022·重庆涪陵·八年级期末)如图,在四边形ABCD中,,分别以四边形ABCD的四条边为边长,向外作四个正方形,面积分别为,,和.若,,,则的值是( )
A.6 B.8 C.9 D.10
变式3.(2022·贵州遵义·八年级期末)如图是数学史上著名的“希波克拉底月牙问题”:在中,,,,,分别以的各边为直径向外作半圆,则图中两个“月牙”,即阴影部分的面积为________.(用含,,的式子表示)
考点2.赵爽弦图相关问题
解题技巧:解决此类问题要熟练运用勾股定理及完全平方公式,结合赵爽弦图利用面积之间的关系即可解决问题.
例1.(2022·河北初二期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为49,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=49;②a-b=2;③2ab=45;④a+b=9.其中正确的结论是( )
A.①②③ B.①②③④ C.①③ D.②④
变式1.(2023·北京八年级期末)用4张全等的直角三角形纸片拼接成如图所示的图案,得到两个大小不同的正方形.若正方形ABCD的面积为10,AH=3,则正方形EFGH的面积为____.
变式2.(2022·江苏·八年级专题练习)如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案.如果图1中的直角三角形的长直角边为5,短直角边为3,图2中阴影部分的面积为S,那么S的值为______.
变式3.(2023.成都市八年级期中)如图,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.连结,交于点P,若正方形的面积为48,.则的值是__________.
考点3.勾股定理的应用-梯子滑动问题
解题技巧:梯子滑动问题解题步骤:
1)运用勾股定理求出梯子滑动之前在墙上或者地面上的距离;
2)运用勾股定理求出梯子滑动之后在墙上或者地面上的距离;
3)两者相减即可求出梯子在墙上或者地面上滑动的距离。
注意:梯子长度为不变量。
主要题型:常见题型有梯子滑动、绳子移动等题型。
例1.(2022·江苏八年级月考)如图,一架25米长的梯子斜靠在一竖直的墙上,梯子底端离墙有7米.(1)求梯子靠墙的顶端距地面有多少米?(2)小燕说“若梯子的顶端沿墙下滑了4米,那么梯子的底端在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.
变式1.(2022·江苏八年级期中)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.
变式2.(2022·吉林九台·八年级期末)如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从移动到,同时小船从移动到,且绳长始终保持不变.、、三点在一条直线上,.回答下列问题:(1)根据题意可知: (填“>”、“<”、“=”).(2)若米,米,米,求小男孩需向右移动的距离(结果保留根号).
变式3.(2022·浙江·八年级期中)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度,他们进行了如下操作:①测得的长为15米(注:);②根据手中剩余线的长度计算出风筝线的长为25米;③牵线放风筝的小明身高1.7米.
(1)求风筝的高度.(2)过点D作,垂足为H,求的长度.
考点4.勾股定理的应用-风吹草动和折竹抵地问题
解题技巧:风吹莲动问题解题步骤:
1)根据问题设出“水深”或者“莲花”的高度;
2)根据题目条件表示出题目中涉及的直角三角形的另外两条边长;
3)根据勾股定理列方程求解。
折竹抵地问题解题步骤:
1)根据问题设出“竹子”折断之前或者折断之后距离地面的高度;
2)根据题目条件表示出题目中涉及的直角三角形的另外两条边长;
3)根据勾股定理列方程求解。
注意:1)“莲花”高度为不变量。2)“竹子”高度为不变量。
主要题型:常见题型有莲花、芦苇、吸管、筷子、有竹子、风筝线、旗杆绳等题型。
例1.(2022成都市八年级月考)《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=_____尺.
变式1.(2023·浙江·八年级期末)如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇生长在它的中央,高出水面的部分为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部恰好碰到岸边的,则这根芦苇的长度是______尺.
变式2.(2022·河南八年级期末)我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即尺,秋千踏板离地的距离就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
变式3.(2022·西安八年级月考)如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿竖直插到水底,此时竹竿离岸边点C处的距离米.竹竿高出水面的部分长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度为
A.1.5米 B.1.7米 C.1.8米 D.0.6米
考点5.勾股定理的应用-台风(噪音)和爆破问题
解题技巧:台风(噪音)、爆破问题解题步骤:
1)根据勾股定理计算爆破点或台风中心到目的地的最短距离;
2)将计算出的最短距离跟爆破或台风的影响范围的半径作比较;
3)若最短距离大于影响半径则不受影响,若最短距离小于半径则受影响。
注意:通常会用到垂线段最短的原理。
主要题型:常见题型有爆破、台风(爆破)等题型。
例1.(2022·辽宁八年级期末)今年的气候变化很大,极端天气频繁出现.某沿海城市气象台监测到台风中心位于正东方向的海上.如图所示,城市所在地为A,台风中心O正以每小时的速度向北偏西60°的方向移动,经监测得知台风中心的范围内将会受台风影响,.该城市是否受到这次台风的影响?若不受影响,请说明理由;若受到这次台风影响,请求出遭受这次台风影响的时间.
变式1.(2022·贵州六盘水·八年级期中)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A,B的距离分别为:,以台风中心为圆心周围以内为受影响区域.
(1)请计算说明海港C会受到台风的影响;(2)若台风的速度为,则台风影响该海港持续的时间有多长?
变式2.(2022·成都七中八年级期中)如图,在甲村到乙村的公路一旁有一块山地正在开发.现A处需要爆破,已知点A与公路上的停靠站B,C的距离分别为400 m和300 m,且ACAB.为了安全起见,如果爆破点A周围半径260 m的区域内不能有车辆和行人,问在进行爆破时,公路BC段是否需要暂时封闭?为什么
变式3.(2023·河南周口市·八年级期中)小王与小林进行遥控赛车游戏,终点为点,小王的赛车从点出发,以米/秒的速度由西向东行驶,同时小林的赛车从点出发,以米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于米时,遥控信号会产生相互干扰,米,米,(1)出发秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距点的距离之和为米时,遥控信号是否会产生相互干扰?
考点6.勾股定理的应用-位置问题(航行和信号塔)
解题技巧:航行问题解题步骤:
1)根据航行的方位角或勾股定理逆定理判定直角三角形;2)根据航行速度和时间表示出直角三角形两直角边长;3)根据勾股定理列方程求解航行角度、速度或距离。
信号塔、中转站题型解题步骤:
1)根据问题设出未知量(一般情况下求谁设谁),并根据设出的未知量表示出两个直角三角形的直角边长;2)在两个直角三角形中分别用勾股定理表示出斜边长;3)根据斜边长相等建立方程求解。
注意:1)轮船航行的题目要注意两船终点之间的距离通常为直角三角形的斜边长;
2)信号塔和中转站等题型要注意两个目的地到信号塔或中转站的距离是相等的。
主要题型:常见题型有轮船航行、信号塔、中转站等题型。
例1.(2023·山东八年级期末)如图,笔直的公路上A、B两点相距22km,C、D为公交公司两停车场,CA⊥AB于点A,DB⊥AB于点B,已知CA=6km,DB=16km,现在要在公路的AB段上建一个加油站M,使得C、D公交公司两停车场到加油站M的距离CM=DM,则加油站M应建在离B点多远处?
变式1.(2022·重庆·八年级期中)如图,某港口O位于南北延伸的海岸线上,东面是大海.远洋号、长峰号两艘轮船同时离开港O,各自沿固定方向航行,“远洋”号每小时航行12海里,“长峰”号每小时航行16海里,它们离开港口1小时后,分别到达A,B两个位置,且AB=20海里,已知“远洋”号沿着北偏东60°方向航行,请判断“长峰”号航行的方向,并说明理由.
变式2.(2022·河南·八年级阶段练习)我国在防控新冠疫情上取得重大成绩,但新冠疫情在国外开始蔓延,为了防止境外输入病例的增加,我国暂时停止了一切国际航班、水运.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我国海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡航艇的航向为北偏西.(1)求甲巡逻艇的航行方向(用含n的式子表示);(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?
变式3.(2022·江西赣州·八年级期中)为了丰富少年儿童的业余生活,某社区要在如图中所在的直线上建一图书馆,本社区有两所学校,分别在点和点处,于点,于点.已知,,.问:图书室应建在距点多少米处,才能使它到两所学校的距离相等?
考点7. 勾股定理的应用-速度问题(超速问题)
解题技巧:速度问题解题步骤:1)根据勾股定理计算行驶的距离;2)根据行驶距离和时间求出实际行驶速度;3)比较实际行驶速度和规定速度。
注意:要将速度统一单位后再进行比较。
只要题型:常见题型有汽车超速等题型。
例1.(2022·浙江·八年级课时练习)《九章算术》中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇.根据勾股定理可列得方程为______.
变式1.(2022·山东平邑县八年级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方50米处的C点,过了6秒后,测得小汽车所在的B点与车速检测仪A之间的距离为130米.(1)求BC间的距离;(2)这辆小汽车超速了吗?请说明理由.
变式2.(2022·辽宁大石桥八年级月考)如图,,,,一机器人在点B处看见一个小球从点A出发沿着方向匀速滚向点,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC为__________.
变式3.(2023·河南·郑州八年级阶段练习)如图,校园内有两棵树,相距8m,一棵树高13m,另一棵树高7m,一只小鸟从一棵树顶端飞到另一棵树的顶端,小鸟至少要飞(  )
A.9m B.10m C.11m D.12m
考点8 勾股定理及逆定理的相关计算
例1.(2022·江西八年级期中)如图,在中,,,,的垂直平分线分别交、于点,.(1)求的长度;(2)求的长.
变式1.(2023·安徽八年级期末)如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.
变式2.(2023·河南八年级期末)如图,已知等腰△ABC的底边BC=17cm,D是腰BA延长线上一点,连接CD,且BD=15cm,CD=8cm.(1)判断△BDC的形状,并说明理由;(2)求△ABC的周长.
变式3.(2022·江苏)如图,在中,,,,的垂直平分线交于点D,交于点E,连接.(1)求的长.(2)求的长.
考点9. 网格中的勾股定理
解题技巧:网格中,根据勾股定理,可求解出三角形或四边形的长度,然后根据长度判断多边形是否是特殊图形。
例1.(2022·陕西九年级)如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,于点D,则AD的长为( )
A.1 B.2 C. D.
变式1.(2022·安徽八年级期末)如图,在正方形网格中,每个小正方形的边长为是网格上的格点三角形,则它的边上的高等于_______.
变式2.(2022·山西初二期末)如图,在正方形网格中,每个小正方形的边长都为,点在小正方形的格点上,连接,则________.
变式3.(2022·西安市黄河中学八年级月考)如图,网格中的每个小正方形的边长为1,四边形的顶点A,B,C,D都在格点上,则下面4条线段长度为的是(  )
A.AB B.BC C.CD D.AD
考点10 .勾股数与直角三角形的判定
解题技巧:常见勾股数有:(3,4,5);(6,8,10);(5,12,13);
勾股数组规律:(n2﹣1)2+(2n)2=(n2+1)2
例1.(2023·湖北八年级期中)世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为a=(m2﹣n2),b=mn,c=(m2+n2),其中m,n(m>n)是互质的奇数,则a,b,c为勾股数.
我们令n=1,得到下列顺序排列的等式:①32+42=52,②52+122=132,③72+242=252,④92+402=412,…
根据规律写出第⑥个等式为 ______________.
变式1.(2023·南宁市八年级月考)可以构成直角三角形三条边长的三个正整数a,b,c,称为勾股数世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数公式为其中m>n>0,m、n是互质的奇数,当n=1时,则有一边长为13的直角三角形的另外两条边长为___.
变式2.(2023·山西初三一模)阅读下列内容,并解决问题.一道习题引发的思考
小明在学习《勾股定理》一章内容时,遇到了一个习题,并对有关内容进行了研究;
习题再现:古希腊的哲学家柏拉图曾指出,如果表示大于1的整数,,,,那么,,为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗? 资料搜集:
定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边长,,都是正整数,且满足,那么,,称为一组勾股数.
关于勾股数的研究:我囯西周初数学家商高在公元前1000年发现了“勾三,股四,弦五”,这组数是世界上最早发现的一组勾股效,毕达哥拉斯学派、柏拉图学派、我国数学家刘徽、古希腊数学家丢番图都进行过勾股数的研究.习题中的表达式是柏拉图给出的勾股数公式,这个表达式未给出全部勾股数,世界上第一次给出勾股数通解公式的是《九幸算术),其勾股数公式为:,,,其中,,是互质的奇数.(注:,,的相同倍数组成的一组数也是勾股数)
问题解答:(1)根据柏拉图的研究,当时,请直接写出一组勾股数;(2)若表示大于1的整数,试证明是一组勾股数;(3)请举出一个反例(即写出一组勾股数),说明柏拉图给出的勾股数公式不能构造出所有的勾股数.
模块4:同步培优题库
全卷共25题 测试时间:90分钟 试卷满分:120分
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022·广西贵港·八年级期末)下列条件:①;②,,;③;④.其中能判定是直角三角形的有( )
A.4个 B.3个 C.2个 D.1个
2.(2022·浙江八年级专题练习)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是( )
A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13
3.(2022·河南信阳·八年级期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为(   ).
A.2.4m B.2.5m C.2.6m D.2.7m
4.(2023·浙江.八年级期中)《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少 若设门对角线长为x尺,则可列方程为( )
A. B. C. D.
5.(2022·河南·八年级期末)学习了勾股定理之后,老师给大家留了一个作业题,小明看了之后,发现三角形各边都不知道,无从下手,心中着急.请你帮助一下小明.如图,的顶点,,在边长为1的正方形网格的格点上,于点,则的长为(  )
A. B. C. D.
6.(2022·浙江·八年级期末)如图,在中,以AC为直角边向外作,分别以AB,BC,CD,DA为直径向外作半圆,面积分别记为S1,S2,S3,S4,已知,,,则S4为( )
A.2 B.3 C. D.
7.(2022·浙江·八年级课时练习)如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a,b,斜边为c)与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则的值为( )
A.68 B.89 C.119 D.130
8.(2022·山东八年级期末)如图,在△ABC中,CE平分∠ACB,CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,若CM=4,则CE2+CF2的值为(  )
A.8 B.16 C.32 D.64
9.(2022·山东菏泽·八年级阶段练习)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为的半圆,其边缘.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )m.(取3)
A.30 B.28 C.25 D.22
10.(2022·重庆九龙坡·八年级期末)我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c能表示为两个正整数a,b的平方和,即,那么称a,b,c为一组广义勾股数,c为广义斜边数,则下面的结论:①m为正整数,则3m,4m,5m为一组勾股数;②1,2,3是一组广义勾股数;③13是广义斜边数;④两个广义斜边数的和是广义斜边数;⑤若,其中k为正整数,则a,b,c为一组勾股数;⑥两个广义斜边数的积是广义斜边数.依次正确的是( )
A.①②③ B.①②④⑤ C.③④⑤ D.①③⑤
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
11.(2022·湖北省崇阳县八年级期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile,“海天”号每小时航行12nmile,它们离开港口一个半小时后相距30nmile,且知道“远航”号沿东北方向航行,那么“海天”号航行的方向是_______.
12.(2022·山东滨州·八年级期末)如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则四边形ABCD的面积为 _____.
13.(2022·内蒙古鄂尔多斯·中考真题)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=,则AB的长是 _____.
14.(2022·河南洛阳·八年级期末)如图,在中,,,是边上的中线,且,则的长为________.
15.(2022·广州市八年级期中)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点160米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心,100米为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为36千米/时,则对学校A的噪声影响最大时卡车P与学校A的距离是___米;重型运输卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间是____秒.
16.(2022·山西初二期末)如图,在正方形网格中,每个小正方形的边长都为,点在小正方形的格点上,连接,则________.
17.(2022·贵州九年级)如图,矩形中,,,将矩形绕点顺时针旋转得到矩形,边与交于点,延长交于点,若,则的长为______.
18.(2023·江苏无锡·八年级期中)爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是 ______cm
三、解答题(本大题共7小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(2023·苏州高新区九年级月考)如图,在中,,是的平分线,于点E.(1)求证:;(2)若,求线段的长度.
20.(2022·湖南长沙市·八年级期末)如图,每个小正方形的边长都为.
(1)求四边形的面积;(2)证明:.
21.(2022·成都市棕北中学八年级月考)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,梯子顶端到地面的距离为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5米.(1)梯子的长是多少?(2)求小巷的宽.
22.(2022·浙江·八年级专题练习)由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?
23.(2022·广西八年级期中)去年某省将地处,两地的两所大学合并成了一所综合性大学,为了方便,两地师生的交往,学校准备在相距的,两地之间修筑一条笔直公路(即图中的线段),经测量,在地的北偏东60度方向、地的西偏北45度方向处有一个半径为的公园,问计划修筑的这条公路会不会穿过公园?为什么?(参考数据)
24.(2022·河南濮阳·八年级期末)已知:在中,,点D在直线上,连接,在的右侧作.(1)如图1,①点D在边上,线段和线段数量关系是_________,位置关系是_________;②直接写出线段之间的数量关系_________;
(2)如图2,点D在B右侧.之间的数量关系还成立吗?说明理由;
(3)在(2)的条件下,若.求出的长.
25.(2022·浙江金华·八年级期末)如图,长方形,点E是上的一点,将沿折叠后得到,且点O在长方形内部.已知,.
(1)如图1,若,求四边形的面积.(2)如图2,延长交于F,连结,将沿折叠,当点D的对称点恰好为点O时,求四边形的面积.(3)如图3,在(2)的条件下,延长交于点G,连结,将沿折叠,当点C的对称点恰好为点O时,求四边形的面积.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)