课件20张PPT。有 理 数 总 复 习一、有理数的基本概念二、有理数的运算1.负数 2.有理数 3.数轴
4.互为相反数
5.互为倒数
6.有理数的绝对值
7.有理数大小的比较
8.科学记数法、近似数与有效数字 加、减、乘、除、乘方运算一、有理数的基本概念1.负数:在正数前面加“—”的数;0既不是正数,也不是负数。判断:
1)a一定是正数;
2)-a一定是负数;
3)-(-a)一定大于0;
4)0是正整数。××××2.有理数:整数和分数统称有理数。有理数整数分数正整数(自然数) 零负整数正分数负分数有理数正有理数零负有理数正整数(自然数)正分数负整数负分数3.数 轴规定了原点、正方向和单位长度的直线.1)在数轴上表示的两个数,
右边的数总比左边的数大;2)正数都大于0,负数都小于0;
正数大于一切负数;3)所有有理数都可以用数轴上
的点表示。4.相反数 只有符号不同的两个数,
其中一个是另一个的相反数。 1)数a的相反数是-a2)0的相反数是0. -22-443)若a、b互为相反数,则a+b=0. (a是任意一个有理数);5.倒 数 乘积是1的两个数互为倒数 .1)a的倒数是 (a≠0); 3)若a与b互为倒数,则ab=1.2)0没有倒数 ;例:下列各数,哪两个数互为倒数?
8, ,-1,+(-8),1,6.绝对值一个数a的绝对值就是数轴上
表示数a的点与原点的距离。1)数a的绝对值记作︱a︱; a-a03) 对任何有理数a,总有︱a︱≥0.7.有理数大小的比较1)可通过数轴比较:
在数轴上的两个数,右边的数
总比左边的数大;
正数都大于0,负数都小于0;
正数大于一切负数;
2)两个负数,绝对值大的反而小。
即:若a<0,b<0,且︱a︱>︱b︱,
则a < b.8.科学记数法、近似数与有效数字1. 把一个大于10的数记成a×10n
的形式,其中a是整数数位只有一位
的数,这种记数法叫做科学记数法 .2. 一个近似数,从左边第一个不是0
的数字起到,到精确到的数位止,所
有的数字,都叫做这个数的有效数字。 有理数的五种运算1.运算法则
2.运算顺序
3.运 算 律1.运算法则1)有理数加法法则
2)有理数减法法则
3)有理数乘法法则
4)有理数除法法则
5)有理数的乘方1)有理数加法法则① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大
的加数的符号,并用较大的绝对值
减去较小的绝对值;互为相反数
的两数相加得0; ③ 一个数同0相加,仍得这个数。若a>0,b<0,︱a︱>︱b︱, 则a+b=用数学语言描述有理数加法法则:①同号相加:
若a>0,b>0,则a+b=若a<0,b<0,则a+b=若a>0,b<0,︱a︱<︱b︱,
则a+b=②异号相加③与0相加若a、b互为相反数,则a+b=a是任一个有理数,则a+0=︱a︱+︱b︱-︱a︱-︱b︱(︱b︱-︱a︱)0a(︱a︱+︱b︱)-2)有理数减法法则 减去一个数,
等于加上这个数的相反数.
即 a-b=a+(-b)例:分别求出数轴上两点间的距离:
①表示2的点与表示-7的点;
②表示-3的点与表示-1的点。解:①︱2-(-7)︱=︱2+7︱=︱9︱=9
②︱-3-(-1)︱=︱-3+1︱=︱-2︱=23)有理数的乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.① 几个不等于0的数相乘,积的符号
由负因数的个数决定,当负因数有奇
数个时,积为负;当负因数有偶数个
时,积为正.② 几个数相乘,有一个因数为0,
积就为0.用数学语言描述有理数乘法法则:①同号相乘
若a>0,b>0,则 ab=︱a︱×︱b︱若a<0,b<0,则 ab=︱a︱×︱b︱②异号相乘
若a>0,b<0,则 ab=若a<0,b>0,则 ab=︱a︱×︱b︱︱a︱×︱b︱③数与0相乘a为任何有理数,则 a×0=0++--4)有理数除法法则①除以一个数等于乘上这个数的倒数;
即a÷b=a× (b≠0)② 两数相除,同号得正,异号得负,
并把绝对值相除;
0除以任何一个不等于0的数,都
得0.5)有理数的乘方 ①求n个相同因数的积的运算,叫做乘方。②正数的任何次幂都是正数;
负数的奇次幂是负数,
负数的偶次幂是正数.2.运算顺序1)有括号,先算括号里面的;
2)先算乘方,再算乘除,
最后算加减;
3)对只含乘除,或只含加减的
运算,应从左往右运算。3.有理数的运算律1)加法交换律a+b=b+a2)加法结合律(a+b)+c=a+(b+c)3)乘法交换律ab=ba4)乘法结合律(ab)c=a(bc)5)分 配 律a(b+c)=ab+ac