登录二一教育在线组卷平台 助您教考全无忧
2017-2018学年数学浙教版八年级下册5.3.2 正方形的判定 同步练习
一、选择题
1.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
2.如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB.DM⊥AN于点M,CN⊥AN于点N,则DM+CN的值为(用含有a的代数式表示)( )
A.a B. a C. a D. a
3.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连结AH,则与∠BEG相等的角的个数为( )
A.4 B.3 C.2 D.1
4.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A.30 B.34 C.36 D.40
二、填空题
5.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为 度.
6.正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点An的坐标为
7.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为
三、解答题
8.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由
9.如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB, AC上的一动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形.
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
10.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
11.如图,在等边三角形ABC中,点D是BC边的中点,以AD为边作等边三角形ADE.
(1)求∠CAE的度数;
(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.
12.如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.
(1)求证:AF=CE;
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.
13.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连结EF,试判断四边形BCEF的形状,并说明理由.
答案解析部分
1.【答案】C
【知识点】切线长定理
【解析】【解答】A、注意真命题是正确的命题.A错在对角线还应互相平分,故A不符合题意.
B、B错在等腰梯形不是中心对称图形,故B不符合题意.
C、圆的切线垂直于经过切点的半径,故C符合题意.
D、D错在结论应是互相平行,故D不符合题意.
故答案为:C.
【分析】根据切线定理:圆的切线垂直于经过切点的半径.
2.【答案】C
【知识点】矩形的性质
【解析】【解答】设AN与DC交于点P,可证DM=PM,CN=PN.设DM=x,则CN=PN= a-x,∴DM+CN= a
故答案为:C.
【分析】根据AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N得∠MDC=∠NCD=45°,所以DM+CN=(DP+PC)cos45°=CDcos45°; 再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.
3.【答案】B
【知识点】翻折变换(折叠问题)
【解析】【解答】连接BH,如图,
∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,
∴∠1=∠2,EB=EH,BH⊥EG,
而∠1>60°,
∴∠1≠∠AEH,
∵EB=EH,
∴∠EBH=∠EHB,
又∵点E是AB的中点,
∴EH=EB=EA,
∴EH=AB,
∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4.
则与∠BEG相等的角有3个。
故答案为:B.
【分析】连接BH,根据折叠的性质得到角相等,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,根据等角的余角相等得到与∠BEG相等的角.
4.【答案】B
【知识点】正方形的性质
【解析】【解答】由题意可知△AEH,△BFE,△CGF,△DHG都是直角边分别为5cm和3cm的直角三角形,所以这四个直角三角形的面积为:4× ×5×3=30cm2,而正方形ABCD的面积为64cm2,所以四边形EFGH的面积是34cm2。
故答案为:B.
【分析】四边形EFGH的外围有四个直角三角形, 每个直角三角形面积=(8-5)×5÷2. 则四边形EFGH面积=方形ABCD的面积-四个直角三角形面积.
5.【答案】125
【知识点】翻折变换(折叠问题)
【解析】【解答】∵在矩形ABCD中,∠ABE=20°,∴∠AEB=70°.∵点D与点B重合,∴∠BEF=∠DEF= =55°,∵AD∥BC,∴∠BFE=∠DEF=55°.∴∠EFC=180°-55°=125°.∵点C的对应点是C′,∴∠EFC′=125°
故答案为:125.
【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
6.【答案】(2n-1, 2n-1)
【知识点】与一次函数相关的规律问题
【解析】【解答】A1的坐标是(0,1),A2的坐标是:(1,2),
根据题意得: b=1,k+b=2,
解得: b=1,k=1.
则直线的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴A1的纵坐标是1,A2的纵坐标是2.
在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22;
则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23;
据此可以得到An的纵坐标是:2n-1,横坐标是:2n-1-1.
故答案为:(2n-1, 2n-1).
【分析】首先根据直线的解析式,分别求得A1,A2,A3…的坐标,可以得到一定的规律,据此即可求解.此题主要考查了一次函数的性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.
7.【答案】
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD为正方形,
∴AB=BC=1,∠B=90°,
∴AC2=12+22,AC=;
同理可求:AE=()2,HE=()3…,
∴第n个正方形的边长an=()n-1.
故答案为:()n-1.
【分析】根据正方形的性质得出∠B=90°,AB=BC=1,根据勾股定理求出AC,再次应用勾股定理可以求出AE,依次类推得到规律.
8.【答案】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是△ABC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形
(2)解:当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形
【知识点】正方形的判定
【解析】【分析】利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得AEBD是矩形;利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
9.【答案】(1)证明:连接AD.
∵△ABC是等腰直角三角形,D是BC的中点,
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
又∵BP=AQ,∴△BPD≌△AQD,
∴PD=QD,∠BDP=∠ADQ,
∵∠BDP+∠ADP=90°,
∴∠ADP+∠ADQ=∠PDQ=90°,
∴△PDQ为等腰直角三角形
(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
由(1)知△ABD为等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠BAC=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP= AB,∴四边形APDQ为正方形
【知识点】正方形的判定
【解析】【分析】连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;若四边形APDQ是正方形,则DP⊥AB,得到P点是AB的中点.
10.【答案】(1)解:四边形OCED是菱形.
∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,
又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.
(2)解:连结OE.由菱形OCED得CD⊥OE,
∴OE∥BC,又CE∥BD,
∴四边形BCEO是平行四边形.
∴OE=BC=8,
∴S四边形OCED= OE·CD= ×8×6=24
【知识点】菱形的性质
【解析】【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,由矩形的性质可知四边形OCED的面积为矩形ABCD面积的一半.
11.【答案】(1)解:在等边三角形ABC中,
∵点D是BC边的中点,∴∠DAC=30°.
又∵△ADE为等边三角形,∴∠DAE=60°.
∴∠CAE=∠DAE-∠DAC=30°
(2)解:由(1)知,∠EAF=90°,
由F为AB的中点知,∠CFA=90°,∴CF∥EA.
在等边三角形ABC中,CF=AD.
在等边三角形ADE中,AD=EA.
∴CF=EA.
∴四边形AFCE为平行四边形.
又∵∠CFA=90°,∴四边形AFCE为矩形.
【知识点】矩形的性质
【解析】【分析】根据等边三角形三线合一的特点,易求得∠DAC=30°,则∠CAE=∠DAE-∠DAC.先证明四边形AECF是平行四边形,然后根据∠CFA=∠FAE=90°,由矩形的定义判定四边形AFCE是矩形.
12.【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE,∴AF=CE.
(2)证明:若AC=EF,则四边形AFCE是平行四边形.由(1)知AF∥CE,AF=CE,∴四边形的AFCE是平行四边形,又∵AC=EF,∴四边形AFCE是矩形
【知识点】矩形的性质
【解析】【分析】由已知条件证明△ADF≌△CDE得到AF=CE.矩形的对角线相等且互相平分,证明矩形就是证明对角线相等.
13.【答案】(1)证明:在矩形ABCD中,AC∥DE,∴∠DCA=∠CAB.∵∠EDC=∠CAB,∴∠DCA=∠EDC,∴AC∥DE
(2)解:四边形BCEF是平行四边形.
理由:由∠DEC=90°,BF⊥AC,可得∠AFB=∠DEC=90°,
又∠EDC=∠CAB,AB=CD,
∴△DEC≌△AFB,∴DE=AF,由(1)得AC∥DE,
∴四边形AFED是平行四边形,∴AD∥EF且AD=EF,
∵在矩形ABCD中,AD∥BC且AD=BC,
∴EF∥BC且EF=BC,∴四边形BCEF是平行四边形:
【知识点】平行四边形的判定
【解析】【分析】要证AC∥DE,只要证明,∠EDC=∠DCA即可;要判断四边形BCEF的形状,可以先猜后证,利用三角形的全等,证明四边形的两组对边分别相等.
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1登录二一教育在线组卷平台 助您教考全无忧
2017-2018学年数学浙教版八年级下册5.3.2 正方形的判定 同步练习
一、选择题
1.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
【答案】C
【知识点】切线长定理
【解析】【解答】A、注意真命题是正确的命题.A错在对角线还应互相平分,故A不符合题意.
B、B错在等腰梯形不是中心对称图形,故B不符合题意.
C、圆的切线垂直于经过切点的半径,故C符合题意.
D、D错在结论应是互相平行,故D不符合题意.
故答案为:C.
【分析】根据切线定理:圆的切线垂直于经过切点的半径.
2.如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB.DM⊥AN于点M,CN⊥AN于点N,则DM+CN的值为(用含有a的代数式表示)( )
A.a B. a C. a D. a
【答案】C
【知识点】矩形的性质
【解析】【解答】设AN与DC交于点P,可证DM=PM,CN=PN.设DM=x,则CN=PN= a-x,∴DM+CN= a
故答案为:C.
【分析】根据AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N得∠MDC=∠NCD=45°,所以DM+CN=(DP+PC)cos45°=CDcos45°; 再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.
3.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连结AH,则与∠BEG相等的角的个数为( )
A.4 B.3 C.2 D.1
【答案】B
【知识点】翻折变换(折叠问题)
【解析】【解答】连接BH,如图,
∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,
∴∠1=∠2,EB=EH,BH⊥EG,
而∠1>60°,
∴∠1≠∠AEH,
∵EB=EH,
∴∠EBH=∠EHB,
又∵点E是AB的中点,
∴EH=EB=EA,
∴EH=AB,
∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4.
则与∠BEG相等的角有3个。
故答案为:B.
【分析】连接BH,根据折叠的性质得到角相等,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,根据等角的余角相等得到与∠BEG相等的角.
4.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A.30 B.34 C.36 D.40
【答案】B
【知识点】正方形的性质
【解析】【解答】由题意可知△AEH,△BFE,△CGF,△DHG都是直角边分别为5cm和3cm的直角三角形,所以这四个直角三角形的面积为:4× ×5×3=30cm2,而正方形ABCD的面积为64cm2,所以四边形EFGH的面积是34cm2。
故答案为:B.
【分析】四边形EFGH的外围有四个直角三角形, 每个直角三角形面积=(8-5)×5÷2. 则四边形EFGH面积=方形ABCD的面积-四个直角三角形面积.
二、填空题
5.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为 度.
【答案】125
【知识点】翻折变换(折叠问题)
【解析】【解答】∵在矩形ABCD中,∠ABE=20°,∴∠AEB=70°.∵点D与点B重合,∴∠BEF=∠DEF= =55°,∵AD∥BC,∴∠BFE=∠DEF=55°.∴∠EFC=180°-55°=125°.∵点C的对应点是C′,∴∠EFC′=125°
故答案为:125.
【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
6.正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点An的坐标为
【答案】(2n-1, 2n-1)
【知识点】与一次函数相关的规律问题
【解析】【解答】A1的坐标是(0,1),A2的坐标是:(1,2),
根据题意得: b=1,k+b=2,
解得: b=1,k=1.
则直线的解析式是:y=x+1.
∵A1B1=1,点B2的坐标为(3,2),
∴A1的纵坐标是1,A2的纵坐标是2.
在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22;
则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23;
据此可以得到An的纵坐标是:2n-1,横坐标是:2n-1-1.
故答案为:(2n-1, 2n-1).
【分析】首先根据直线的解析式,分别求得A1,A2,A3…的坐标,可以得到一定的规律,据此即可求解.此题主要考查了一次函数的性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.
7.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为
【答案】
【知识点】正方形的性质
【解析】【解答】解:∵四边形ABCD为正方形,
∴AB=BC=1,∠B=90°,
∴AC2=12+22,AC=;
同理可求:AE=()2,HE=()3…,
∴第n个正方形的边长an=()n-1.
故答案为:()n-1.
【分析】根据正方形的性质得出∠B=90°,AB=BC=1,根据勾股定理求出AC,再次应用勾股定理可以求出AE,依次类推得到规律.
三、解答题
8.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由
【答案】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是△ABC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形
(2)解:当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形
【知识点】正方形的判定
【解析】【分析】利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得AEBD是矩形;利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
9.如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB, AC上的一动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形.
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
【答案】(1)证明:连接AD.
∵△ABC是等腰直角三角形,D是BC的中点,
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
又∵BP=AQ,∴△BPD≌△AQD,
∴PD=QD,∠BDP=∠ADQ,
∵∠BDP+∠ADP=90°,
∴∠ADP+∠ADQ=∠PDQ=90°,
∴△PDQ为等腰直角三角形
(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
由(1)知△ABD为等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠BAC=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP= AB,∴四边形APDQ为正方形
【知识点】正方形的判定
【解析】【分析】连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;若四边形APDQ是正方形,则DP⊥AB,得到P点是AB的中点.
10.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
【答案】(1)解:四边形OCED是菱形.
∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,
又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.
(2)解:连结OE.由菱形OCED得CD⊥OE,
∴OE∥BC,又CE∥BD,
∴四边形BCEO是平行四边形.
∴OE=BC=8,
∴S四边形OCED= OE·CD= ×8×6=24
【知识点】菱形的性质
【解析】【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,由矩形的性质可知四边形OCED的面积为矩形ABCD面积的一半.
11.如图,在等边三角形ABC中,点D是BC边的中点,以AD为边作等边三角形ADE.
(1)求∠CAE的度数;
(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.
【答案】(1)解:在等边三角形ABC中,
∵点D是BC边的中点,∴∠DAC=30°.
又∵△ADE为等边三角形,∴∠DAE=60°.
∴∠CAE=∠DAE-∠DAC=30°
(2)解:由(1)知,∠EAF=90°,
由F为AB的中点知,∠CFA=90°,∴CF∥EA.
在等边三角形ABC中,CF=AD.
在等边三角形ADE中,AD=EA.
∴CF=EA.
∴四边形AFCE为平行四边形.
又∵∠CFA=90°,∴四边形AFCE为矩形.
【知识点】矩形的性质
【解析】【分析】根据等边三角形三线合一的特点,易求得∠DAC=30°,则∠CAE=∠DAE-∠DAC.先证明四边形AECF是平行四边形,然后根据∠CFA=∠FAE=90°,由矩形的定义判定四边形AFCE是矩形.
12.如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.
(1)求证:AF=CE;
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.
【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE,∴AF=CE.
(2)证明:若AC=EF,则四边形AFCE是平行四边形.由(1)知AF∥CE,AF=CE,∴四边形的AFCE是平行四边形,又∵AC=EF,∴四边形AFCE是矩形
【知识点】矩形的性质
【解析】【分析】由已知条件证明△ADF≌△CDE得到AF=CE.矩形的对角线相等且互相平分,证明矩形就是证明对角线相等.
13.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连结EF,试判断四边形BCEF的形状,并说明理由.
【答案】(1)证明:在矩形ABCD中,AC∥DE,∴∠DCA=∠CAB.∵∠EDC=∠CAB,∴∠DCA=∠EDC,∴AC∥DE
(2)解:四边形BCEF是平行四边形.
理由:由∠DEC=90°,BF⊥AC,可得∠AFB=∠DEC=90°,
又∠EDC=∠CAB,AB=CD,
∴△DEC≌△AFB,∴DE=AF,由(1)得AC∥DE,
∴四边形AFED是平行四边形,∴AD∥EF且AD=EF,
∵在矩形ABCD中,AD∥BC且AD=BC,
∴EF∥BC且EF=BC,∴四边形BCEF是平行四边形:
【知识点】平行四边形的判定
【解析】【分析】要证AC∥DE,只要证明,∠EDC=∠DCA即可;要判断四边形BCEF的形状,可以先猜后证,利用三角形的全等,证明四边形的两组对边分别相等.
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1