:简单事件的概率期末总复习学案(二)
概率的综合应用
例4一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,求能过第二关的概率【版权所有:21教育】
例5.某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;【出处:21教育名师】
(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
练一练:
1.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了 名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 ,喜欢“戏曲”活动项目的人数是 人;
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.21·世纪*教育网
2.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图10所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:21世纪教育网版权所有
求出样本容量,并补全直方图;
该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。21cnjy.com
例6三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.2·1·c·n·j·y
(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)21教育网
(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数.
例7.有六张完全相同的卡片,分A、B两组,每组三张,在A组的卡片上分别画上“√、×、√”,B组的卡片上分别画上“√、×、×”,如图1所示。21·cn·jy·com
(1)若将卡片无标记的一面朝上摆在桌上,再发布从两组卡片中随机各抽取一张,求两张卡片上标记都是√的概率(请用树形图法或列表法求解)www.21-cn-jy.com
(2)若把A、B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记。【来源:21·世纪·教育·网】
①若随机揭开其中一个盖子,看到的标记是√的概率是多少
②若揭开盖子,看到的卡片正面标记是√后,猜想它的反面也是√,求猜对的概率。
练一练:
1.甲口袋中装有3个相同的小球,它们分别写有数值﹣1,1,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y),请用树形图或列表法,求点A落在第一象限的概率.www-2-1-cnjy-com
2.为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部5000名司机中的部分司机后,整理相关数据并制作了右侧两个不完整的统计图:克服酒驾﹣﹣你认为哪一种方式更好?2-1-c-n-j-y
A.司机酒驾,乘客有责,让乘客帮助监督 B.在车上张贴“请勿喝酒”的提醒标志
C.签订“永不酒驾”保证书 D.希望交警加大检查力度 E.查出酒驾,追究就餐饭店的连带责任 21*cnjy*com
根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m= ;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?【来源:21cnj*y.co*m】
:简单事件的概率期末总复习学案(二)答案
概率的综合应用
列表得:
6
7
8
9
10
11
12
5
6
7
8
9
10
11
4
5
6
7
8
9
10
3
4
5
6
7
8
9
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4
5
6
例5.某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;21·cn·jy·com
(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
思路分析:(1)把各时间段的学生人数相加即可:8+10+16+12+4=50(人);用全校同学的人数乘以40分钟以上(含40分钟)的人数所占的比重,计算即可得解:1000×(人)。
(2)列表或画树状图,然后根据概率公式计算即可得解。
解:(1)50;320。
(2)列表如下:
∵共有12种情况,恰好抽到甲、乙两名同学的是2种,
∴P(恰好抽到甲、乙两名同学)=
练一练:
1.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了 名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 ,喜欢“戏曲”活动项目的人数是 人;
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.21世纪教育网版权所有
解:(1)50;24%;4。
(2)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,画树状图:
∵任选两项设立课外兴趣小组, 共有12种等可能结果,故恰好选中“舞蹈、声乐”两项活动的有2种情况,
∴故恰好选中“舞蹈、声乐”两项活动的概率是
2.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图10所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:21教育网
求出样本容量,并补全直方图;
该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。21cnjy.com
解:(1)∵由发言人数直方图可知B组发言人为10人,又已知B、E两组发言人数的比5:2,
∴E组发言人为4人。
又∵由发言人数扇形统计图可知E组为8%,∴发言人总数为4÷8%=50人。
∴由扇形统计图知A组、C组、D组分别为3人,15人,13人。
∴F组为50-3-10-15-13-4=5人。
∴样本容量为50人。补全直方图为:
(2) ∵在统计的50人中,发言次数大于12的有4+5=9人,
∴在这天里发言次数不少于12的频率为9÷50=18%。
∴全年级500人中,在这天里发言次数不少于12的次数为500×18%=90(次)。
(3)∵A组发言的学生为3人,∴有1位女生,2位男生。
∵E组发言的学生: 4人,∴有2位女生,2位男生。
∴由题意可画树状图为:
∴共有12种情况,所抽的两位学生恰好是一男一女的情况有6种,
∴所抽的两位学生恰好是一男一女的概率为
例6三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.2·1·c·n·j·y
(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)【来源:21·世纪·教育·网】
(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数.
思路分析:(1)根据题意画出树状图,然后根据概率公式列式计算即可得解;
设摸出﹣2、0、1的次数分别为x、y、z,根据摸出的次数、13个是的和、平方和列出三元一次方程组,然后求解即可.21·世纪*教育网
解:(1)根据题意画出树状图如下:
所有等可能的情况数有9种,其中两次记下之数的和大于0的情况有3种,
则P==;
(2)设摸出﹣2、0、1的次数分别为x、y、z,
由题意得,,③﹣②得,6x=18,解得x=3,
把x=3代入②得,﹣2×3+z=﹣4,解得z=2,
把x=3,z=2代入①得,y=8,
所以,方程组的解是,
故摸到球上所标之数是0的次数为8.
例7.有六张完全相同的卡片,分A、B两组,每组三张,在A组的卡片上分别画上“√、×、√”,B组的卡片上分别画上“√、×、×”,如图1所示。www-2-1-cnjy-com
(1)若将卡片无标记的一面朝上摆在桌上,再发布从两组卡片中随机各抽取一张,求两张卡片上标记都是√的概率(请用树形图法或列表法求解)2-1-c-n-j-y
(2)若把A、B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记。 21*cnjy*com
①若随机揭开其中一个盖子,看到的标记是√的概率是多少
②若揭开盖子,看到的卡片正面标记是√后,猜想它的反面也是√,求猜对的概率。
思路分析:根据题意,画出树形图或列出表格,根据“概率=.
(1)列表得出所有等可能的情况数,找出两种卡片上标记都是“√”的情况数,即可求出所求的概率;
(2)①根据题意得到所有等可能情况有3种,其中看到的标记是“√”的情况有2种,即可求出所求概率;
②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,即可求出所求概率.www.21-cn-jy.com
解:根据题意,可列表如下:
从上表中可以看出,所有可能结果共有9种,且每种结果出现的可能性都相等,其中两张卡片上标记都是“√”的结果有2种。【来源:21cnj*y.co*m】
(2)①∵根据题意,三张卡片正面的标记有三种可能,分别为“√”、“×”、“√”,
∴随机揭开其中一个盖子,看到的标记是“√”的概率为.
②∵正面标记为为“√”的卡片,它的反面标记只有两种情况,分别为“√”和“×”,
∴猜对反面也是“√”的概率为P=.
练一练:
1.甲口袋中装有3个相同的小球,它们分别写有数值﹣1,1,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y),请用树形图或列表法,求点A落在第一象限的概率.【出处:21教育名师】
解:画树状图得:
∵共有9种等可能的结果,点A落在第一象限的有4种情况,
∴点A落在第一象限的概率为:.
2.为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部5000名司机中的部分司机后,整理相关数据并制作了右侧两个不完整的统计图:克服酒驾﹣﹣你认为哪一种方式更好?【版权所有:21教育】
A.司机酒驾,乘客有责,让乘客帮助监督 B.在车上张贴“请勿喝酒”的提醒标志
C.签订“永不酒驾”保证书 D.希望交警加大检查力度 E.查出酒驾,追究就餐饭店的连带责任21教育名师原创作品
根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m= ;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?21*cnjy*com
解:(1)调查的总人数是:81÷27%=300(人),
则选择D方式的人数300﹣75﹣81﹣90﹣36=18(人),
m=×100=12.
补全条形统计图如下:
:简单事件的概率期末总复习配套练习(二)
1.某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.21cnjy.com
2.学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:www.21-cn-jy.com
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.2·1·c·n·j·y
3.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.21·cn·jy·com
(1)从中任取一球,求抽取的数字为正数的概率;
(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程﹣2ax+a+3=0有实数根的概率;【来源:21·世纪·教育·网】
(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.21·世纪*教育网
4.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
5.如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.21世纪教育网版权所有
(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?
(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?www-2-1-cnjy-com
6.学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.
请你回答:(1)本次活动共有 件作品参赛;各组作品件数的众数是 件;
(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?2-1-c-n-j-y
(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率. 21*cnjy*com
7.四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:【来源:21cnj*y.co*m】
方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.
方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.
请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.
8.为了解“阳光体育”活动情况,我市教育部门在市三中2000名学生中,随机抽取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查的结果绘制成如图的两幅不完整的统计图:21教育网
根据以上信息解答下列问题:
(1)参加调查的人数共有 人;在扇形图中,表示“C”的扇形的圆心角为 度;
(2)补全条形统计图,并计算扇形统计图中的m;
(3)若要从该校喜欢“B”项目的学生中随机选择100名,则喜欢该项目的小华同学被选中的概率是多少?
:简单事件的概率期末总复习配套练习(二)答案
1.某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.21·世纪*教育网
解:(1)画树状图得:
则共有12种等可能的结果;
(2)∵恰好选派一男一女两位同学参赛的有8种情况,
∴恰好选派一男一女两位同学参赛的概率为:=.
2.学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:www.21-cn-jy.com
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.2·1·c·n·j·y
解:(1)25×2=50人;
50﹣25﹣15=10人;
如图所示条形图,
圆心角度数=×360°=108°;
(2)估计该年级步行人数=600×20%=120人;
(3)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢步行”的学生表示为D,1名“喜欢骑车”的学生表示为E,21cnjy.com
则有AB、AC、BC、AD、BD、CD、AE、BE、CE、DE10种等可能的情况,
2人都是“喜欢乘车”的学生的概率P=
3.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.【来源:21·世纪·教育·网】
(1)从中任取一球,求抽取的数字为正数的概率;
(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程﹣2ax+a+3=0有实数根的概率;www-2-1-cnjy-com
(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.2-1-c-n-j-y
解:(1)根据题意得:抽取的数字为正数的情况有1个,
则;
(2)方程﹣2ax+a+3=0,
△=﹣4a(a+3)=﹣12a≥0,即a≤0,
则方程﹣2ax+a+3=0有实数根的概率为;
(3)列表如下:
﹣3
﹣1
0
2
﹣3
﹣﹣﹣
(﹣1,﹣3)
(0,﹣3)
(2,﹣3)
﹣1
(﹣3,﹣1)
﹣﹣﹣
(0,﹣1)
(2,﹣1)
0
(﹣3,0)
(﹣1,0)
﹣﹣﹣
(2,0)
2
(﹣3,2)
(﹣1,2)
(0,2)
﹣﹣﹣
所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,
则P=
4.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,
∴P(转动一次转盘获得购物券)==
(2)∵P(红色)=,P(黄色)=,P(绿色)==,
∴
∵40元>30元,
∴选择转转盘对顾客更合算.
5.如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.21·cn·jy·com
(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?
(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)? 21*cnjy*com
解:(1)P(小鸟落在草坪上)==;
(2)用树状图或列表格列出所有问题的可能的结果:
A
B
C
A
(A,B)
(A,C)
B
(B,A)
(B,C)
C
(C,A)
(C,B)
由树状图(列表)可知,共有6种等可能结果,编号为A、B的2个小方格空地种植草坪有2种,
所以P(编号为A、B的2个小方格空地种植草坪)==
6.学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.
请你回答:(1)本次活动共有 件作品参赛;各组作品件数的众数是 件;
(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?21教育网
(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.【来源:21cnj*y.co*m】
解:(1)由题意可得出,本次活动参赛共有:12÷=12÷=60(件),
各组作品件数的众数是12;
故答案为:60,12;
(2)∵第四组有作品:60×=18(件),
第六组有作品:60×=3(件),
∴第四组的获奖率为:=,第四组的获奖率为:;
∵<,
∴第六组的获奖率较高;
(3)画树状图如下:
,
由树状图可知,所有等可能的结果为12种,其中刚好是(B,D)的有2种,
所以刚好展示作品B、D的概率为:P==.
7.四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:【出处:21教育名师】
方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.
方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.
请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.
解:小亮选择A方案,使他获胜的可能性较大.
方案A:∵四张扑克牌的牌面是5的有2种情况,不是5的也有2种情况,
∴P(小亮获胜)==;
方案B:画树状图得:
∵共有12种等可能的结果,两张牌面数字之和为偶数的有4种情况,不是偶数的有8种情况,
∴P(小亮获胜)==;
∴小亮选择A方案,使他获胜的可能性较大.
8.为了解“阳光体育”活动情况,我市教育部门在市三中2000名学生中,随机抽取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查的结果绘制成如图的两幅不完整的统计图:21世纪教育网版权所有
根据以上信息解答下列问题:
(1)参加调查的人数共有 人;在扇形图中,表示“C”的扇形的圆心角为 度;
(2)补全条形统计图,并计算扇形统计图中的m;
(3)若要从该校喜欢“B”项目的学生中随机选择100名,则喜欢该项目的小华同学被选中的概率是多少?
解:(1)300;108。
(2)∵抽取的学生中喜欢“C”项目的学生数为300-60-69-36-45=90(人)。
∴补全条形统计图如下: