教 师 备 课 笔 记
上课日期 12 月 1 日 星期五
课 题 7.4 角与角的度量
课时安排 1
教学目标 1、使学生进一步认识角的有关概念,掌握角的表示方法。2、理解平角、周角的意义。 3、使学生正确掌握“角、分、秒”的互化,会进行角度的和、差计算.
重点 角的概念和角的表示法、角度的和、差计算。
难点 角的多种表示法,从运动的观点给出的角的概念。
教具准备 多媒体,投影仪
教 学 过 程
引入新课在小学里,我们已经初步认识了“角”,你能在图7-21中找到角吗?这些实例的共性两线之间存在着不同大小的角度。
二、新课教学 1.角的概念: (1)角的第一定义:有公共端点的两条射线所组成的图形叫做角。 这个公共端点叫做角的顶点,这两条射线叫做角的边。(可对照图形讲解) 用圆规摆成一个角的形状,请同学们说出什么是角的顶点?什么是角的边? 提问: ①角的边有长、短吗?②任意两条射线所组成的图形是角吗?③从一点出发,引三条射线,能构成几个角?
(2)关于角的第二定义: 教师可展示折扇或单摆,通过运动,展示出运动从初始状态到终止状态的过程。 然后归纳出角的概念:一条射线绕着它的端点旋转而成的图形也叫做角。其中起始位置的射线叫做角的始边,终止位置叫做角的终边想一想;这种定义的含义与第一种定义的的含义有什么相同与不同的地方? 课后反馈
教 学 过 程
相同处:两种定义方法都揭示了角的两个基本特征:①有公共端点;②有两条射线组成。
不同处:用第二种方法,对角的指向更为明确,并且为今后的学习打下了伏笔。
2.角的表示:
角用符号“∠”表示,读做“角”,通常有以下几种表示方法:
(1)用三个大写字母来表示,其中表示顶点的字母一定要写在另两个字母的中间。
如图7-23中的角可以表示成∠ABC或∠CBA.中间的字母B表示顶点,其他两个字母A,C分别表示角的两边上的点.
(2)用一个数字或希腊字母(如α,β,γ)表示.如图7-24中的角分别可以表示为∠1,∠α,∠β等.
(3)用顶点的字母表示(当以某一点为顶点的角多于一个时,不能用这种方法表示角,因此,这种方法虽然简单,但局限性大).如图7-23中,∠ABC可以表示成∠B,但图7-24中,∠AOC不能用∠O表示(为什么 ).
完成做一做
3.平角、周角的概念
如图7-22,一条射线由原来的位置OA,绕着它的端点O旋转到OB,当OB和OA成一直线时,所成的图形就是平角。
再旋转下去,当终边OB与始边OA重合时,所成的角叫做周角.
4.角的度量
在小学里,我们已经学过一个周角等于360°,一个平角等于180°.
把周角等分为360份,每一份就是l°的角;把1°的角等分成60等份,每一份是1′;而把1分的角再等分60份,每一份就是1秒,记作1〞.
即 1周角=360°; 1平角=180° ; 1°=60′; 1′=60〞.
度、分、秒是角的基本度量单位。
要测量一个角的大小,我们可以用量角器来进行.
观察图7-26中的量角器,并讨论下列问题:
(1)量角器上的平角被等分成多少个1°的角
(2)先估计图7-27中∠A和∠B的度数,再用量角器量一量.
在测量中,你遇到哪些问题
指出:使用量角器量角的步骤:
(1)对中:使量角器的圆心与角的顶点重合;
(2)对线:使量角器的零度数与角的一边重合;
(3)读数:看角的另一边落在量角器的哪条刻度数线(或靠近哪一条刻度线),从刻度线读出角的度数.
5.度、分、秒的互化及角的和差计算
例1用度、分、秒表示48.32°
例2 用度表示30°9′36〞
说明:(1)度、分、秒的互化是六十进制的,由度化分,由分化秒,只要乘以60即可
(2)在进行单位互化时,应明确是进行量的互化,而不是数的互化。在计算中,要逐级运算,步骤合理,计算正确。
例3计算:180°-(45°17′+52°57′)
指出:计算时按角、分、秒分别进行、再逐级进位和逐级退位,退、进位按六十进制换算.
三、巩固练习 完成课内练习1,2,3,4
四、课堂小结
1.角是非常重要的一种几何基本图形.角有两种定义方法,但其实质是一致的,要抓住角的两个基本特征:有公共端点,有两条射线组成。
2.角是非常重要的一种几何基本图形.角有两种定义方法,但
其实质是一致的,要抓住角的两个基本特征:有公共端点,由两条
射线组成.
3.角有三种表示方法,各有优缺点,因此在实际应用中,要掌握两个原则:第一简明,第二正确。
4.角度的互化及和差计算。
五、布置作业:见作业本
教后随笔 角的两种定义学生掌握起来有一定的困难,具体的运用就更有难度了,对于角的各种不同的表示掌握的比较好,就是很多时候要把角的符号给忘了。
指导教师意见 签字: 年 月 日
学校抽查意见 签字: 年 月 日