第一章 1.6尺规作图 课件(共29张PPT)+教案+单元整体教学分析

文档属性

名称 第一章 1.6尺规作图 课件(共29张PPT)+教案+单元整体教学分析
格式 zip
文件大小 2.6MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-09-18 17:00:39

文档简介

中小学教育资源及组卷应用平台
学 科 数学 年 级 八年级 设计者
教材版本 浙教版 册、章 八年级上册第一章
课标要求 掌握“三角形任何两边的和大于第三边”的性质。 掌握三角形的内角和外角的性质,会用性质解决有关问题。 会用量角器、三角尺等工具画三角形的中线、角平分线和高线。 了解定义、命题、基本事实、定理、推论的意义。会判断命题的真假,了解反例的作用。 理解全等三角形的概念,掌握全等三角形的判定定理,掌握全等三角形的性质。 掌握线段垂直平分线、角平分线性质定理,会利用尺规作基本图形、三角形。 7.会运用三角形以及相关知识解决简单的实际问题。
内容分析 在七年级上册学生已经接触了图形的初步知识,体验从现实世界中抽象出的几何图形,如直线、线段、射线、角等,并能用简单的语言加以描述。从这一章开始将比较深入地学习三角形的有关知识。三角形是最常见的儿何图形之一,在现实生活和生产中有着非常广泛的应用,可以说三角形是学习"空间与图形"的基础。三角形的许多重要性质是研究其它儿何图形的依据。例如,多边形可以分割成若干个三角形,并用三角形的知识去解决。根据三角形的性质还可以推导许多儿何学中的重要结论。
学情分析 学生在小学已经学习了有关三角形的一些初步知识,对三角形内角和为180 度和三角形的分类已有了解,能在生活中抽象出三角形的几何图形,并能大致的说出三角形的简单概念.在活动经验上,小学四年级学生就是通过拼摆的方式来认识三角形的。通过前面的学习,学生对拼摆、测量、交流等活动已积累了一定的经验,从这一章开始将比较深入地学习三角形的有关知识。三角形全等是证明线段相等、角相等的重要工具,掌握角形全等的判断方法,一方而培养了学生的逻辑思维能力,又为今后的进一步学习作好了准备。“尺规作图”应用的广泛性及在今后学习、工作中的重要性,通过对些基本尺规作图的要求,在操作过程中,培养学生积极探索精神,培养学生的动于操作的实践能力。
单元目标 (一)教学目标 了解定义、命题相关概念。掌握三角形相关性质, 掌握全等三角形的判定定理及性质。掌握线段垂直平分线、角平分线性质定理,会利用尺规作基本图形、三角形。会运用三角形以及相关知识解决简单的实际问题。在探索图形性质的过程中,经历观察,操作、想象、交流与推理等活动,发展数学抽象与推理能力。 (二)教学重点、难点 教学重点:会用三角形的性质解决问题,能用三角形全等证明线段相等或者角相等。探究三角形的性质以及三角形全等的条件。学会判断真假命题和用正确的数学语言证明问题。 教学难点:用规范的数学符号语言表达推理过程,从复杂的图形和实际问题中抽象出全等图形,利用三角形全等证明线段相等、角相等,发展几何直观,体会模型思想。以及如何运用分类讨论的思想方法、转化的思想方法解决问题。
单元知识结构框架及课时安排 (一)单元知识结构框架 1.本章编写特点 (1).利用实物原型,直观地展示图形世界中的奥妙。 教材中涉及的概念都从现实的背景出发,结合具休图形,给出描述性的定义,让学生根据图形去理解。如全等的概念用三对完全相同的树叶、邮票、拼图板等来引导学生,通过观察、对比、与同伴交流,得出能够重合这种全等图形的本质属性;二是从大量的实物原型,直观地展示了丰富多彩的图形世界中的奥妙。如用三角架钢梁来说明三角形的稳定性;用历史上测量河宽的办法说明三角形全等的实际应用;这说明了三角形的学习是来源于实践,服务于实践通过与现实图形的结合,使学生从大量有趣的素材中,认识、体验、理解角形的性质,全等三角形的判定方法及应用。 (2).实验推理并用,低起点迈小步逐步培养思维习惯。 在七年级上册"图形的初步知识"一章中,学生已初步接触了几何语言。从初步接触、逐渐加深,到比较严密完整地书写出揄过程,还有很长的一个过程。几何入门教学中是一个中学阶段数学教学的难点。《数学课程标准》几何证明方面的要求有所降低,但不是完全不要。本教科书在把握分寸的基础上,采用实验与推理并用,低起点、迈小步的办法帮助学生逐步学会掌握。如用绳子来验证三角形两边之和大于第三边:用折纸来验证三角形三个内角的和等于180度:用填一个理由或一个结论的办法训练较完整说理过程,培养学生的思维习惯。 (3).转换学习方式,强调动手操作。 因为本章还没有出现公理体系,因此也不能从严格意义上证明命题。学生可以通过观察、归纳、类比等方法去体验,通过说理去验证命题,这其中必然有许多必须动手操作的过程。这也为学生转换学习方式创造了条件。例如,一角形两边的和大于第三边:三角形三个内角的和等于180度;说明两个三角形全等等都是在折一折、比一比、拼一拼、做一做这些活动中得到确认,这本身也是一种探索过程。又如,画三角形三条中线,三条角平分线、三条高及探索它们的一些特征,课本是通过"合作学习"的方式进行的。事实上,画得是否准确,以用三条线段或延长线是否交于一点来检验,这种奇妙的性质虽然月前还无法证明,但通过以后的学习,一定能使学生得到满意的答复。三角形的高的概念、画法也是一样,先动手画,再与同伴交流让学生发现三角形的高的特征。 2.教学建议 (1).三角形是最简单、最基本的几何图形,许多图形包括曲线形都可以通过三角形去研究。三角形在目常生活和工农业生产中有着广泛的应用。教学时教师要充分体现课本的编排意图,尽量利用生活实物原型去展示,然后经过观察、联想、交流、讨论,师生共同归纳出有关三角形的一些概念、性质。对于学生容易混淆的概念,应在对比图形中使学生理解、掌握。如三角形的外角的概念,学生往往从字面上理解,认为是三角形外面的角。应在变式图形中从邻补角去认识就可以少发生错误。 (2).自主探索学习在本章的体现更加突出,教师要考虑到这一点,在组织、引导、交流过程中应该作好充分准备。如在锐角三角形、直角三角形、钝角三角形中画高时,从高的特征、垂足和位置(尤其是对直角三角形、钝角三角形,垂足位置在角的项点或边的延长线上)、三条高的关系步步深入,并注意培养如何从学生的活动中发现、归纳这些结论,尝试用数学语言有条理的表达等方面下功夫。再如三角形全等的条件,除子记住 SSS 、 SAS 、 ASA 、 AAS 这些结论外,还应该思考"具备什么条件才能使两个三角形全等?""两边一角对应相等,角不是夹角行不行?为什么?""条件还能少吗?"答问题。然后通学活动的经验,培养开拓创新的精神。 (3).继续重视用几何语言有条理表达的能力的培养。在七年级上册第7章"图形的初步知识"中,几何语言的学习主要是描述性的,现从这一章开始初步进入推理阶段,所以有更高的要求。课本的编排分三个层次逐步加深:首先是填一个符号,判断一些边、角的大小或关系,如前三节中的课内练习:其次是说明三角形全等,或利用三角形全等的性质来说明线段和角相等,完成说理过程。从第四节开始都有这种类型的习题,且要求依次提高,先填一些重要或刚学过的理由,到后来基本上要求从头到尾填写理由;最后是作图题中说明道理,这一点教师在教学过程中要重视,学生练习中也应该明白为什么可以这样作图的道理, (4).重视"尺规作图"技能的培养,教师可先向学生介绍有关"尺现作图的历史背景,引起学生的兴趣,它独特的魅力曾吸引了无数的数学家及数学爱好者。学生可能对为什么要用没有刻度的声尺感到不堪解,这里数师不需要更多的解释,重要的是掌握尺规作图的步骤。 3.本章教学中应注意的问题 (1).本章还不能达到对定理的严格意义上的证明,因此也不能以完整演绎推理的证明来要求学生,只需要做到合情推理,让学生借助于实验、观察、归纳、类比等方法获得数学猜想,并进一步寻求证据,给出说理过程。步步有据是为了逐步培养、训练学生几何语言的使用和逻辑思维能力,教师在这里不能操之过急,应严格控制教学要求,不要把传统教材中有关的几何题的难度来要求学生,增加学生的课业负担。 (2).重视三角形全等在生活和生产中的应用,课本中已经展示了许多联系生活和生产实际的例题和习题,除了课本中提供的问题以外,教师还可以发动学生自己去发现,并尝试解决 (3).对于作图题,应该区分两种不同的要求:在七年级上册第7章中已经出现的用百尺和圆规作线段等习题,只要求画出图形,说明结果,可以不写出画法,但要保留作图痕迹。本章开始,尺规作图题在无特殊说明的情况下,都要求写出作法,但不要求证明。课本将这部分内容安排在这一章,是作为全等角形的应用来考虑的。因此写出作法后,可以要求学生能说明理由,以培养学生步步有据的较严格的逻辑思维能力。 (4).木章的探究题、 C 组题、阅读材料有一定的难度,可能部分学生有困难,教师视学生实际情况可灵活处理,或作适当提示,但不能包办代替,例如,"作三角形"一方中的 C 组题,主要目的是让学生知道有两边和一边的对角对应相等的两三角形不一定个等,对学有余力的学生、可引导学生注意线段 a 的长短对所作图的影响,讨论C1与角 B 另一边的交点的情况。 (二)课时安排 课时编号单元主要内容课时数1.1认识三角形(1)11.1 1.1认识三角形(2)1 1.2 1.2定义与命题(1) 1 1.21.2定义与命题(2)11.31.3证明(1)11.31.3证明(2)11.41.4全等三角形11.51.5三角形全等的判定(1) 11.51.5三角形全等的判定(2)11.51.5三角形全等的判定(3)11.51.5三角形全等的判定(4)11.6 1.6 尺规作图1
达成评价 课题课时目标达成评价评价任务 1.1认识三角形(1) 1、结合具体实例,进一步认识三角形的概念及基本要素. 2、理解三角形三边关系的性质,并会初步应用它们来解决问题. 3、通过观察、操作、想象、推理、交流等活动,发展空间观念和推理能力. 1.掌握三角形的分类. 2.掌握三角形任何两边的和大于第三边,任何两边之差小于第三边”的性质. 3.通过观察、操作、想象、推理、交流等活动,渗透转化思想、方程思想、分类讨论思想和数形结合思想. 活动一:情景导入,利用生活的实例(展示一些图片)引入三角形的概念. 活动二:通过小组探究,共同合作将多个三角形进行分类. 活动三:通过几何图片探究三角形的性质.1.1认识三角形(2)1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、面积计算等问题.1.了解三角形的角平分线、中线、高线的概念. 2.能运用相关概念解决简单的数学问题. 活动一:复习导入,回顾垂线、中点、角的平分线的知识点. 活动二: 学生合作探究,动手操作,掌握三角形的角平分线、中线和高线的概念及画图. 1.2定义与命题(1) 1.了解定义的含义. 2.了解命题的含义. 3.了解命题的结构,会把一个命题写成“如果……那么……”的形式.1.理解命题的概念. 2.培养学生树立科学严谨的学习方法.活动一:了解定义的含义.了解命题的含义. 活动二: 了解命题的结构,会把命题写成“如果……那么……”的形式. 1.2定义与命题(2) 理解并掌握真命题与假命题的概念; 2.能对真命题进行说明其正确性,对假命题能利用反例说明.命题的真假的概念和判别. 2.培养学生树立科学严谨的学习方法.活动一:复习导入,巩固命题的知识顺势引入真命题、假命题的概念. 活动二:命题的真假的判别. 1.3证明(1) 理解什么是证明,并了解证明基本格式和步骤; 2.能进行平行线的性质和判定的证明.1.充分发挥自已的知识积淀,从而对证明的格式有更深的理解. 2.感受数学的严谨、结论的确定,初步养成言之有理、落笔有据的推理习惯,发展初步的演绎推理能力.活动一:回忆思考并用类比的方法证明平行线的性质. 活动二:尝试画图并写出已知和求证. 活动三:理解两种分析问题的方法,写出规范的解题过程. 1.3证明(2) 掌握三角形的内角和定理及推论,并能进行简单的运用. 2.了解证明命题的格式和一般步骤. 1.通过简单命题的证明,训练学生的逻辑推理能力和自主探究能力. 2.能够对数学的逻辑推理严密思维有一定的体验和感受,并利用这种思维解决更多的问题.活动一:回忆所学,通过对比引出新知. 活动二:通过做题来归纳证明的步骤. 活动三:添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化. 1.4全等三角形 理解全等图形、全等三角形及全等三角形的对应元素的概念; 掌握全等三角形的性质及其应用; 3.会确定全等三角形的对应角和对应边.1.通过演绎变换两个重合的三角形,呈现出它们之间的各种不同位置的活动,从中了解并体会图形变换的思想,逐步培养动态研究几何的意识. 2.利用三角板的重叠效果,使学生加深对全等三角形对应顶点、对应边、对应角的理解,体验全等三角形对应边相等、对应角相等,提高学生对图形的分析能力,发展他们的空间观念.活动一:情景导入,通过同学观察图像,引入全等图形的概念.通过学生观察猜想,再利用动画效果进行验证,使学生对图形的全等有了感性认识. 活动二:试一试,摆一摆:用符号来表示两个全等三角形,并指出它们的对应顶点、对应边、对应角. 1.5三角形全等的判定(1) 掌握全等三角形“边边边”判定定理并能进行简单证明; 理解三角形的稳定性; 3.会用尺规作角平分线,并能说明其中的道理. 掌握利用边边边证明两个三角形全等. 2.学会探究三角形全等的条件.活动一:通过让学生自己操作来探究发现. 活动二:在几何作图时,应先画出草图分析,将简单的尺规作图分解为若干个基本作图,并探求作图的途径、方法和步骤.1.5三角形全等的判定(2)理解并掌握全等三角形“边角边”判定定理; 2.理解并掌握线段的垂直平分线的性质.1.掌握两个三角形全等的基本事实:两边及其夹角对应相等的两个三角形全等. 2.掌握进行有关角度证明时,常常需要通过三角形全等来得到相等的角. 3.能初步运用“边角边”解决实际问题. 活动一:复习导入,回顾边边边,继续上一堂课的研究.经历猜想-作图-验证 “边角边”公理的过程. 活动二:强调引导格式的书写,特别关注好顺序:SAS,夹角写中间. 活动三:对于例题学生自己书写证明过程,再进行校对,让学生能熟练证明格式.1.5三角形全等的判定(3)1.5三角形全等的判定(3)1.理解全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具. 2.掌握两个三角形全等的条件:两个角和其夹边对应相等的两个三角形全等.活动一:感受在判定三角形全等时,关键是选择恰当的判定条件. 活动二:通过探索掌握判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.1.5三角形全等的判定(4)理解并掌握全等三角形“角角边”判定定理推理,能运用它进行简单证明; 2.理解并掌握角平分线的性质定理.1.掌握两个三角形全等的条件:两角及其中一个角的对边对应相等的两个三角形全等。 2.会运用全等三角形的性质及角平分线的性质判定两条线段相等. 3.用综合法来进行分析,即从已知条件出发,利用已经学过的定义、定理以及基本事实,逐步向前推进,直到问题解决.活动一:通过复习三角形全等的判定方法,让学生猜测还有哪几种可能的方法. 活动二:判定两个三角形全等,先根据已知条件和求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.1.6 尺规作图会作一个角等于已知角; 在给定边的条件下,会求作三角形; 3.能作线段的垂直平分线,并能解决实际问题. 1.掌握作一个角等于已知角、作角平分线与作线段的垂直平分线的作法分析过程. 2.学会尺规作图给定边角条件下的三角形.活动一:让学生动手操作,正确作图 ,体验数学作图,动手实践的乐趣,能够利用数学作图解决实际问题. 活动二:理解尺规作图的含义和做一个角等于已知角的作图方法.
21世纪教育网(www.21cnjy.com)(共29张PPT)
1.6尺规作图
浙教版 八年级 上册
教材分析
学会了解尺规作图的含义及其历史背景;会画一个角等于已知角;作角平分线;给定边角条件下,求作三角形;作已知线段的垂直平分线;了解作法的理由.
教学目标
教学目标:1.了解尺规作图的含义和基本尺规作图的范围.
2.会用直尺和圆规作一个角等于已知角.
3.会用直尺和圆规作三角形:已知三边作三角形,已知
两边及其夹角作三角形;已知两角及其一边作三角形.
教学重点:基本尺规作图:作一个角等于已知角,作已知线段的垂直平
分线.
教学难点:作一个角等于已知角,作已知线段的垂直平分线的做法分析
过程有一定的难度,是本节教学的难点.
新知导入
情境引入
任务一
我们已经学习过用直尺和圆规作一条线段等于已知线段及作一个角的平分线,你能说说以前是怎样作图的吗?
1.画线段
已知:线段MN=a,求作一条线段AB,使AB=a.
a
M
N
新知讲解
合作学习
(3)在射线AC 上截取AB =a ,则线段
AB 就是所要画的线段.
(1)先画射线AC;
(2)用圆规量出线段a的长;
作法:
A
C
B
已知:线段a,求作一条线段等于a.
a
任务二
已知:∠AOB ,求作∠AOB 的平分线.
(1)以O 为圆心,以适当长为半径画弧,交OA
于C 点,交OB 于D 点;
(3)过O、P 作射线OP ,
则OP即为所求作的角平分线.
(2)分别以C、D 两点圆心,以大于 CD 长为半
径画弧,两弧相交于P 点;
作法:
O
B
A
P
C
D
【想一想】你知道什么是尺规作图吗?尺规的基本作用分别是什么?
只用没有刻度的直尺和圆规作图称为尺规作图.
尺规作图的工具只能是直尺和圆规,其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆孤等.
值得注意的是直尺是没有刻度的或不考虑刻度的存在.
据传为了显示谁的逻辑思维能力更强,古希腊人限制了几何作图的工具,结果一些普通的画图题让数学家苦苦思索了两千多年.尺规作图特有的魅力,使无数人沉湎其中.
提炼概念
我们已经学习过用直尺和圆规作一条线段等于已知线段及作一个角的平分线.
本节我们将继续学习用直尺和圆规作一个角等于已知角、作一条线段的垂直平分线等基本尺规作图,以及用基本尺规作图作三角形.
典例精讲
1.以点O为圆心,适当长度为半径作弧,分别交OA,OB于点C,D.
作法:
2.作一条射线O,A, .以点O,为圆心,OC长为半径作弧 ,交O,A,于点C, .
3. 以点C,为圆心,CD长为半径作弧 ,交弧 于点D,.
4. 过点O,、D, 作射线O,B,.
∠A,O,B,是所求作的角.
A
B
O
将你作的∠A,O,B,与∠AOB进行比较,它们相等吗?为什么?
D
C
例1 已知∠AOB,求作∠A,O,B,,使∠A,O,B,=∠AOB.
C,
D,
A,
O,
B,
3.画角
A
B
O
D
C
C,
D,
A,
O,
B,
证明:
连接CD,C,D,
( SSS)
(作法)
(作法)
(作法)
在△OCD与△O,C,D,中
∴△OCD≌△O,C,D,
∴∠A,O,B,=∠AOB
OC=O,C,
OD=O,D,
CD=C,D,
你能证明上题作图的正确性吗
A
B
l
O
p
4.画垂直平分线
线段垂直平分线上的点到线段两端的距离相等.
垂直平分线的定义
线段垂直平分线的性质?
垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线.
D
C
例2 已知线段AB,用直尺和圆规作线段AB的垂直平分线.
作法:
1.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点C,D;
2. 过点C,D作直线CD.
直线CD就是线段AB的垂直平分线.
A
B
4.画垂直平分线
D
E
例3 已知∠a, ∠b和线段a,用直尺和圆规作△ABC,使∠A=∠a,∠B=∠b,AB=a.
作法:
1.作一条线段AB=a.
2.分别以A,B为顶点,在AB的同侧作∠DAB=∠a,∠EBA=∠b,DA与EB相交于点C.
△ABC就是所求作的三角形.
a
a
b
B
A
C
5.画三角形——已知两角及夹边
ASA
分析:
根据夹边的概念和题目所给的条件,可以考虑先作出夹边,然后再以夹边的端点作为角的顶点进一步确定两个角.
归纳概念
常用的作图语言
(1)过点×、×作线段或射线、直线;
(2)连结两点×、×;
(3)在线段或射线×上截取××=××;
(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;
(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;
(6)延长××到点×,使××=××.
注:写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:作线段××=××;作∠×××=∠×××;作线段××的垂直平分线××等.
欣赏图片
真正的手绘大神!
这大概是我现在见过
尺规作图的最高境界!
Rafael Araujo..... 一个建筑师兼画家....
课堂练习
必做题
1.如图,用尺规作出∠OBF=∠AOB,作图痕迹是(  )
A.以点B为圆心,OD为半径的弧
B.以点B为圆心,DC为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DC为半径的弧
D
2.下列尺规作图,能判断AD是△ABC边上的高的是(  )
B
3.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是 (  )
D
选做题
4.如图,在△ABC中,AB>AC.按以下步骤作图:分别以B和C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为________.
10
综合拓展题
5.如图,已知线段a,c,∠α.
求作△ABC,使BC=a,AB=c,∠ABC=∠α.
解: (1)作∠MBN=∠α.
(2)在射线BM上截取BA=c,在射线BN上截取BC=a.
(3)连结AC,则△ABC即为所求作的三角形(如图).
作业布置
必做题
1.如图,下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线.对应选项中作法错误的是(  )
A.① B.② C.③ D.④
C
选做题
2.尺规作图.(不写作法,保留作图痕迹)已知线段a和∠AOB,点M在OB上,如图所示.
(1)在OA边上作点P,使OP=2a;
(2)作∠AOB的平分线;
(3)过点M作OB的垂线.
解: (1)如图,点P为所求作.
(2)如图,OC为所求作.
(3)如图,MD为所求作.
综合拓展题
3.电信部门要修建一座电视信号发射塔,按照设计要求,发射塔到两城镇 的距离必须相等,到两条高速公路 的距离也必须相等.请在图中作出发射塔的位置.(尺规作图,不写作法,保留作图痕迹)
解:如图,连结 .设两条公路相交于点 .
线段 的垂直平分线与 的平分线的交点 或与 的平分线的交点 ,即为发射塔的位置.
课堂总结
本节知识归纳
作业布置
教材课后配套作业题。
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
分课时教学设计
第12课时《1.6尺规作图 》教学设计
课型 新授课口 复习课口 试卷讲评课口 其他课口
教学内容分析 学会了解尺规作图的含义及其历史背景;会画一个角等于已知角;作角平分线;给定边角条件下,求作三角形;作已知线段的垂直平分线;了解作法的理由.
学习者分析 用圆规和直尺画三角形是尺规作图的重要基础,在日常生活和生产实际中也有较多应用,已知两边及其夹角;已知两角及其一边;已知三边能且只能作一个三角形,这里的“一个三角形”的含义是:当三角形的大小、形状完全相同时无论位置如何,都视作同一个三角形.
教学目标 会作一个角等于已知角; 在给定边的条件下,会求作三角形; 3. 能作线段的垂直平分线,并能解决实际问题.
教学重点 尺规作图给定边角条件下的三角形.
教学难点 作一个角等于已知角、作角平分线与作线段的垂直平分线的作法分析过程.
学习活动设计
教师活动学生活动环节一:情境引入教师活动1: 复习回顾: 我们以前学过作一条线段等于已知线段,作一个角的角平分线。还记得怎么画吗?一起回顾。 1.已知:线段a,求作一条线段等于a. (1)先画射线AC; (2)用圆规量出线段a的长; (3)在射线AC 上截取AB =a ,则线段AB 就是所要画的线段 2.已知:∠AOB ,求作∠AOB 的平分线. (1)以O 为圆心,以适当长为半径画弧,交OA 于C 点,交OB 于D 点; (2)分别以C、D 两点圆心,以大于 CD 长为半径画弧,两弧相交于P 点; (3)过O、P 作射线OP ,则OP即为所求作的角平分线. 在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。 我们已经学习过用直尺和圆规作一条线段等于已知线段及作一个角的平分线. 本节我们将继续学习用直尺和圆规作一个角等于已知角、作一条线段的垂直平分线等基本尺规作图,以及用基本尺规作图作三角形。 学生活动1: 提问生活问题引入 讨论、探究活动意图说明: 学会了解尺规作图的含义及其历史背景;会画一个角等于已知角;作角平分线;利用所学知识解决生活实际问题.环节二:新课讲解 思考:怎么做一个角等于已知角? 如图,已知∠AOB ,求作∠A'O'B',使∠A'O'B'=∠AOB. 作法:1.以点O 为圆心,以适当长为半径画弧,分别交OA 于C ,交OB 于D ;(图1) 2.作一条射线O′A′;以点O′为圆心,以OC 长为半径画弧l,交O′ A′于C′. (图2) 3.以点C′为圆心,以CD 长为半径画弧,交弧l于D′. 4.经过点O′,D’画射线O′ B′,则∠A′ O′ B′就是所求作的角. 你能证明上题作图的正确性吗 如图1和图2,连结CD,C’D’。 在△OCD与△O’C’D’中, ∵ OC=O’C’(作法) OD=O’D’(作法) CD=C’D’ (作法) ∴△OCD≌△O’C’D’(SSS) ∴∠A’O’B’=∠AOB 学生活动2: 让学生自己操作来探究发现. 探究、交流、归纳 活动意图说明: 用圆规和直尺画三角形是尺规作图的重要基础,提高学生分析问题和解决问题的能力.环节三:例题讲解思考:怎么做一个角等于已知角? 例1如图,已知∠AOB ,求作∠A'O'B',使∠A'O'B'=∠AOB. 作法:1.以点O 为圆心,以适当长为半径画弧,分别交OA 于C ,交OB 于D ;(图1) 2.作一条射线O′A′;以点O′为圆心,以OC 长为半径画弧l,交O′ A′于C′. (图2) 3.以点C′为圆心,以CD 长为半径画弧,交弧l于D′. 4.经过点O′,D’画射线O′ B′,则∠A′ O′ B′就是所求作的角. 你能证明上题作图的正确性吗 如图1和图2,连结CD,C’D’。 在△OCD与△O’C’D’中, ∵ OC=O’C’(作法) OD=O’D’(作法) CD=C’D’ (作法) ∴△OCD≌△O’C’D’(SSS) ∴∠A’O’B’=∠AOB 例2已知:线段AB ,用直尺和圆规画出线段AB的垂直平分线. 分析 要作线段AB的垂直平分线,只需找出线段AB的垂直平分线上的两个点,这由线段垂直平分线上的点的性质不难找出。 作法:(1) 分别以A、B 两点为圆心,以大于AB 线段一半的长为半径画弧,两弧交于C、D 两点; (2)过点C、D 作直线CD,直线CD即为所求作线段AB 的垂直平分线. 你能根据作法证明直线CD就是线段AB的垂直平分线吗? 已知:如图,连接AC、BC、AD、BD,AC=AD=BC=BD.
求证:CD⊥AB,CD平分AB. 证明:设CD与AB交于点E.
∵在△ACD和△BCD中,
AC=BC AD=BD CD=CD
∴△ACD≌△BCD(SSS).
∴∠1=∠2.
∵AC=BC,
∴△ACB是等腰三角形.
∴CE⊥AB,AE=BE.
即 CD⊥AB,CD平分AB. 例3 已知:∠α,∠β,线段a,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,AB=a. 1.作一条线段AB=a 2.分别以A,B为顶点,在AB的同侧作∠DAB=∠α,∠EBA=∠β,DA与EB交于点C。△ABC就是所求作的三角形 常用的作图语言 (1)过点×、×作线段或射线、直线; (2)连结两点×、×; (3)在线段或射线×上截取××=××; (4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×; (5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×; (6)延长××到点×,使××=××. 注:写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:作线段××=××;作∠×××=∠×××;作线段××的垂直平分线××等。学生活动3: 做例题,规范解答过程. 学生分小组进行讨论,后选出代表回答问题.教师对回答进行点评讲解. 让学生直观地理解解题思路,师生共同完成解题步骤,注意格式应规范,使学生由感性认识上升到理性认识. 活动意图说明: 了解作法的理由,让学生踊跃回答,教师再对例题进行分析,做到面向全体学生.
板书设计
课堂练习 【知识技能类作业】 必做题: 1.如图,用尺规作出∠OBF=∠AOB,作图痕迹是(  ) A.以点B为圆心,OD为半径的弧 B.以点B为圆心,DC为半径的弧 C.以点E为圆心,OD为半径的弧 D.以点E为圆心,DC为半径的弧 D 2.下列尺规作图,能判断AD是△ABC边上的高的是(  ) B 选做题: 3.如图,在△ABC中,AB>AC.按以下步骤作图:分别以B和C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为________. 10 【综合拓展类作业】 4.如图,已知线段a,c,∠α. 求作△ABC,使BC=a,AB=c,∠ABC=∠α. 解: (1)作∠MBN=∠α. (2)在射线BM上截取BA=c,在射线BN上截取BC=a. (3)连结AC,则△ABC即为所求作的三角形(如图).
作业布置 【知识技能类作业】 必做题: 1.如图,下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线.对应选项中作法错误的是(  ) A.① B.② C.③ D.④ C 选做题: 2.尺规作图.(不写作法,保留作图痕迹)已知线段a和∠AOB,点M在OB上,如图所示. (1)在OA边上作点P,使OP=2a; (2)作∠AOB的平分线; (3)过点M作OB的垂线. 解: (1)如图,点P为所求作. (2)如图,OC为所求作. (3)如图,MD为所求作. 【综合拓展类作业】 3.电信部门要修建一座电视信号发射塔,按照设计要求,发射塔到两城镇 A , B 的距离必须相等,到两条高速公路 m和 n 的距离也必须相等.请在图中作出发射塔的位置.(尺规作图,不写作法,保留作图痕迹) 解:如图,连结 AB.设两条公路相交于点 O . 线段 AB的垂直平分线与 ∠MON 的平分线的交点 P 或与 ∠QON的平分线的交点 P′,即为发射塔的位置.
教学反思
21世纪教育网(www.21cnjy.com)