浙教版八上第2章特殊三角形专题2.7 勾股定理的应用【八大题型】(含解析)

文档属性

名称 浙教版八上第2章特殊三角形专题2.7 勾股定理的应用【八大题型】(含解析)
格式 doc
文件大小 3.4MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-09-27 11:42:50

图片预览

文档简介

中小学教育资源及组卷应用平台
勾股定理的应用【八大题型】
【题型1 勾股定理之大树折断模型】
【例1】(2022春 上杭县期中)为了美化环境,净化城市的天空,某市要将建在西里(城中村)的一座高50m的烟囱拆除,由于烟囱附近的房子密集,拆除只能采取分段拆除,若烟囱折断时,顶端下来正好砸在距烟囱底部10m的地方最安全,那么按以上要求该烟囱应从底部向上  米处折断.
【变式1-1】(2022春 高安市月考)如图,一棵大树(树干与地面垂直)在一次强台风中于离地面6米B处折断倒下,倒下后的树顶C与树根A的距离为8米,则这棵大树在折断前的高度为(  )
A.10米 B.12米 C.14米 D.16米
【变式1-2】(2022春 乾安县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.
【变式1-3】(2022春 赤壁市期中)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.
【题型2 勾股定理之风吹荷花模型 ( javascript:void(0)" \o "勾股定理之风吹荷花模型 )】
【例2】(2022春 邹城市校级月考)如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是   尺.
【变式2-1】(2022春 乾安县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.
【变式2-2】(2022 晋州市期末)如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.
(1)开始时,船距岸A的距离是   m;
(2)若淇淇收绳5m后,船到达D处,则船向岸A移动    m.
【变式2-3】(2022 朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是(  )
A.3cm B.5cm C.6cm D.8cm
【题型3 勾股定理之蚂蚁行程模型 ( javascript:void(0)" \o "勾股定理之蚂蚁行程模型 )】
【例3】(2022春 璧山区期中)如图,一圆柱体的底面周长为10cm,高AB为12cm,BC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为(  )
A.17cm B.13cm C.12cm D.14cm
【变式3-1】如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
【变式3-2】如图,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,若圆柱底面半径为,高为5,则蚂蚁爬行的最短距离为   .
【变式3-3】(2022春 东湖区校级期中)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是(  )
A.(3+) cm B. cm C. cm D. cm
【题型4 勾股定理之方向角问题】
【例4】(2022 未央区校级期中)如图,在灯塔O的东北方向8海里处有一轮船A,在灯塔的东南方向6海里处有一渔船B,则AB间的距离为(  )
A.9海里 B.10海里 C.11海里 D.12海里
【变式4-1】(2022春 白水县期末)如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以120海里/时的速度从港口A出发,向北偏东60°方向航行到达B,另一海舰以90海里/时的速度同时从港口A出发,向南偏东30°方向航行到达C,则此时两艘海舰相距多少海里?
【变式4-2】(2022春 合肥期末)某船从港口A出发沿南偏东32°方向航行15海里到达B岛,然后沿某方向航行20海里到达C岛,最后沿某个方向航行了25海里回到港口A,判断此时△ABC的形状,该船从B岛出发到C是沿哪个方向航行的,请说明理由.
【变式4-3】(2022春 潮南区期中)如图,某港口O位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.
(1)若它们离开港口一个半小时后分别位于A、B处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.
(2)若“远航”号沿北偏东60°方向航行,经过两个小时后位于F处,此时船上有一名乘客需要紧急回到PE海岸线上,若他从F处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.
【题型5 勾股定理之梯子问题】
【例5】(2022春 淮南期中)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为   米.

【变式5-1】(2022 花溪区校级期末)一个长度为5米的梯子的底端距离墙脚2米,这个梯子的顶端能达到4.5米的墙头吗?
【变式5-2】(2022 广南县校级期中)某同学不小心把衣服从教学楼4楼掉落在离地面高为2.3米的树上.其中一位同学赶快搬来一架长为2.5米的梯子,架在树干上,梯子底端离树干1.5米远,另一位同学爬上梯子去拿衣服.问这位同学能拿到衣服吗?如果再把梯子底端向树干靠近0.8米,问此时这位同学能拿到衣服吗?
【变式5-3】(2022 泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
【题型6 勾股定理之范围影响问题】
【例6】(2022春 雁塔区校级期末)如图,有一台环卫车沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,环卫车周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若环卫车的行驶速度为每分钟50米,环卫车噪声影响该学校持续的时间有多少分钟?
【变式6-1】(2022春 孝南区月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.
(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;
(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.
【变式6-2】(2022春 岳麓区校级期中)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距(  )
A.12海里 B.13海里 C.14海里 D.15海里
【变式6-3】(2022春 綦江区期末)今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.
(1)求∠ACB的度数;
(2)海港C受台风影响吗?为什么?
(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?
【题型7 勾股定理之选址使到两地距离相等】
【例7】(2022春 启东市期中)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.
【变式7-1】(2022 市北区期末)如图,某学校(A点)到公路(直线l)的距离为300米,到公交车站(D点)的距离为500米,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,则商店C与车站D之间的距离是   米.
【变式7-2】(2022 牡丹区期末)在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高   米.
【变式7-3】(2022 和平区三模)如图,某校A距离笔直的公路l为3km,与该公路上某车站D的距离为5km,现要在公路旁建一个小商店C,使之与学校A及车站D的距离相等,则BC=   .
【题型8 勾股定理应用之其他问题】
【例8】(2022 龙岗区校级月考)如图,某住宅社区在相邻两楼之间修建一个上方是以AB为直径的半圆,下方是长方形的仿古通道,已知AD=2.3米,CD=2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由.
【变式8-1】(2022 洛宁县期末)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?
【变式8-2】(2022春 合肥期中)如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.
【变式8-3】(2022 广陵区二模)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.
(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):
①该屏幕的长= 16 寸,宽= 12 寸;
②已知“屏幕浪费比”,求该电视机屏幕的浪费比.
(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:2.2,结果精确到0.1)
勾股定理的应用【八大题型】
【题型1 勾股定理之大树折断模型】
【例1】(2022春 上杭县期中)为了美化环境,净化城市的天空,某市要将建在西里(城中村)的一座高50m的烟囱拆除,由于烟囱附近的房子密集,拆除只能采取分段拆除,若烟囱折断时,顶端下来正好砸在距烟囱底部10m的地方最安全,那么按以上要求该烟囱应从底部向上  24 米处折断.
【分析】根据题意设出从底部向上x米处折断,则由题意可知另外两边分别为50﹣x,10.利用勾股定理列出方程进行求解.
【解答】解:设从底部向上x米处折断,则另外两边分别为50﹣x,10
故102+x2=(50﹣x)2
解得x=24(米)
故烟囱应从底部向上24米处折断.
故答案为24.
【变式1-1】(2022春 高安市月考)如图,一棵大树(树干与地面垂直)在一次强台风中于离地面6米B处折断倒下,倒下后的树顶C与树根A的距离为8米,则这棵大树在折断前的高度为(  )
A.10米 B.12米 C.14米 D.16米
【分析】先根据勾股定理求出大树折断部分的高度,再根据大树的高度等于折断部分的长与未断部分的和即可得出结论.
【解答】解:∵△ABC是直角三角形,AB=6m,AC=8m,
∴BC10(m),
∴大树的高度=AB+BC=6+10=16(m).
故选:D.
【变式1-2】(2022春 乾安县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.
【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣1)m,利用勾股定理可得x2=42+(x﹣1)2.
【解答】解:在Rt△ACB中,
AC2+BC2=AB2,
设秋千的绳索长为xm,则AC=(x﹣1)m,
故x2=42+(x﹣1)2,
解得:x=8.5,
答:绳索AD的长度是8.5m.
【变式1-3】(2022春 赤壁市期中)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.
【分析】首先构造直角三角形,进而求出BD的长,进而求出AC的长,即可得出答案.
【解答】解:如图所示:延长AB,过点C作CD⊥AB延长线于点D,
由题意可得:BC=13m,DC=12m,
故BD5(m),
即AD=9m,
则AC15(m),
故AC+AB=15+4=19(m).
答:这棵树原来的高度是19米.
【题型2 勾股定理之风吹荷花模型 ( javascript:void(0)" \o "勾股定理之风吹荷花模型 )】
【例2】(2022春 邹城市校级月考)如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是  13 尺.
【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.
【解答】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,
因为边长为10尺的正方形,所以B'C=5尺
在Rt△AB'C中,52+(x﹣1)2=x2,
解之得x=13,
即芦苇长13尺.
故答案是:13.
【变式2-1】(2022春 乾安县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.
【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣1)m,利用勾股定理可得x2=42+(x﹣1)2.
【解答】解:在Rt△ACB中,
AC2+BC2=AB2,
设秋千的绳索长为xm,则AC=(x﹣1)m,
故x2=42+(x﹣1)2,
解得:x=8.5,
答:绳索AD的长度是8.5m.
【变式2-2】(2022 晋州市期末)如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.
(1)开始时,船距岸A的距离是  12 m;
(2)若淇淇收绳5m后,船到达D处,则船向岸A移动  (12) m.
【分析】(1)在Rt△ABC中,利用勾股定理计算出AB长;
(2)根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.
【解答】解:(1)在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,
∴(m),
故答案为:12;
(2)∵淇淇收绳5m后,船到达D处,
∴CD=8(m),
∴AD(m),
∴BD=AB﹣AD=(12)m.
故答案为:(12).
【变式2-3】(2022 朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是(  )
A.3cm B.5cm C.6cm D.8cm
【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.
【解答】解:根据题意可得图形:AB=12cm,BC=9cm,
在Rt△ABC中:AC15(cm),
所以18﹣15=3(cm),18﹣12=6(cm).
则这只铅笔在笔筒外面部分长度在3cm~6cm之间.
观察选项,只有选项D符合题意.
故选:D.
【题型3 勾股定理之蚂蚁行程模型 ( javascript:void(0)" \o "勾股定理之蚂蚁行程模型 )】
【例3】(2022春 璧山区期中)如图,一圆柱体的底面周长为10cm,高AB为12cm,BC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为(  )
A.17cm B.13cm C.12cm D.14cm
【分析】将圆柱的侧面展开,得到一个长方体,再然后利用两点之间线段最短解答.
【解答】解:如图所示:
由于圆柱体的底面周长为10cm,
则AD=105(cm).
又因为CD=AB=12cm,
所以AC(cm).
故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是13cm.
故选:B.
【变式3-1】如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.
【解答】解:将台阶展开,如下图,
因为AC=3×3+1×3=12,BC=5,
所以AB2=AC2+BC2=169,
所以AB=13(cm),
所以蚂蚁爬行的最短线路为13cm.
答:蚂蚁爬行的最短线路为13cm.
【变式3-2】如图,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,若圆柱底面半径为,高为5,则蚂蚁爬行的最短距离为  13 .
【分析】将圆柱侧面展开得到一个矩形,根据两点之间线段最短,求出对角线长即可.
【解答】解:因为圆柱底面圆的周长为2π12,高为5,
所以将侧面展开为一长为12,宽为5的矩形,
根据勾股定理,对角线长为13.
故蚂蚁爬行的最短距离为13.
【变式3-3】(2022春 东湖区校级期中)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是(  )
A.(3+) cm B. cm C. cm D. cm
【分析】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.
【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,
则这个长方形的长和宽分别是9和4,
则所走的最短线段是;
第二种情况:把我们看到的左面与上面组成一个长方形,
则这个长方形的长和宽分别是7和6,
所以走的最短线段是;
第三种情况:把我们所看到的前面和右面组成一个长方形,
则这个长方形的长和宽分别是10和3,
所以走的最短线段是;
三种情况比较而言,第二种情况最短.
故选:C.
【题型4 勾股定理之方向角问题】
【例4】(2022 未央区校级期中)如图,在灯塔O的东北方向8海里处有一轮船A,在灯塔的东南方向6海里处有一渔船B,则AB间的距离为(  )
A.9海里 B.10海里 C.11海里 D.12海里
【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.
【解答】解:已知东北方向和东南方向刚好是一直角,
∴∠AOB=90°,
又∵OA=8海里,OB=6海里,
∴AB10(海里).
故选:B.
【变式4-1】(2022春 白水县期末)如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以120海里/时的速度从港口A出发,向北偏东60°方向航行到达B,另一海舰以90海里/时的速度同时从港口A出发,向南偏东30°方向航行到达C,则此时两艘海舰相距多少海里?
【分析】根据题意可得∠BAC=90°,分别求出2小时两辆海舰走过的路程AB和AC,然后利用勾股定理求得两艘海舰的距离BC的长度.
【解答】解:由题意知,∠BAC=90°,AB=2×120=240,AC=2×90=180,
由勾股定理得BC300,
答:此时两艘海舰相距300海里.
【变式4-2】(2022春 合肥期末)某船从港口A出发沿南偏东32°方向航行15海里到达B岛,然后沿某方向航行20海里到达C岛,最后沿某个方向航行了25海里回到港口A,判断此时△ABC的形状,该船从B岛出发到C是沿哪个方向航行的,请说明理由.
【分析】利用勾股定理的逆定理可得△ABC为直角三角形,且∠ABC=90°,再利用直角三角形的性质可求解∠CBD=32°,进而可求解.
【解答】解:该船从B岛出发到C是沿西偏南32°方向航行的.
理由:由题意得:AB=15海里,BC=20海里,AC=25海里,
∵152+202=252,
∴△ABC为直角三角形,且∠ABC=90°,
由题意得∠BAD=32°,∠ADB=90°,
∴∠ABD=90°﹣32°=58°,
∴∠CBD=90°﹣58°=32°,
故该船从B岛出发到C是沿西偏南32°方向航行的.
【变式4-3】(2022春 潮南区期中)如图,某港口O位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.
(1)若它们离开港口一个半小时后分别位于A、B处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.
(2)若“远航”号沿北偏东60°方向航行,经过两个小时后位于F处,此时船上有一名乘客需要紧急回到PE海岸线上,若他从F处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.
【分析】(1)根据勾股定理的逆定理得出△AOB是直角三角形,进而解答即可;
(2)过点A作AD⊥PE于D,根据含30°角的直角三角形的性质解答即可.
【解答】解:(1)∵OA=16×1.5=24,OB=12×1.5=18,AB=30,
∴OA2+OB2=AB2,
∴△AOB是直角三角形,
∴∠AOB=90°,
∵“远航”号沿东北方向航行,
∴∠AON=45°,
∴∠BON=90°﹣45°=45°,
∴“海天”号沿西北方向航行;
(2)过点F作FD⊥PE于D,
OF=16×2=32,
∵∠NOF=60°,
∴∠FOD=90°﹣60°=30°,
∴FD,
∴16÷80=0.2(小时),
∵0.2<0.5,
∴能在半小时内回到海岸线.
【题型5 勾股定理之梯子问题】
【例5】(2022春 淮南期中)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为  2.2 米.

【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.
【解答】解:在Rt△ACB中,∠ACB=90°,BC=0.7米,AC=2.4米,
∴AB2=0.72+2.42=6.25(米2),
∵AB>0,
∴AB=2.5(米),
在Rt△A′BD中,∠A′DB=90°,A′D=2米,A'B=AB=2.5米,
∴BD2+A′D2=A′B2,
即BD2+22=2.52(米2),
∵BD>0,
∴BD=1.5(米),
∴CD=BC+BD=0.7+1.5=2.2(米),
故答案为:2.2.
【变式5-1】(2022 花溪区校级期末)一个长度为5米的梯子的底端距离墙脚2米,这个梯子的顶端能达到4.5米的墙头吗?
【分析】根据勾股定理,求出梯子顶端到地面的垂直高度(距离),再和墙的高度作比较.
【解答】解:梯子顶端到地面的垂直距离为:,
因为4.5,
所以这个梯子的顶端能达到4.5米的墙头.
【变式5-2】(2022 广南县校级期中)某同学不小心把衣服从教学楼4楼掉落在离地面高为2.3米的树上.其中一位同学赶快搬来一架长为2.5米的梯子,架在树干上,梯子底端离树干1.5米远,另一位同学爬上梯子去拿衣服.问这位同学能拿到衣服吗?如果再把梯子底端向树干靠近0.8米,问此时这位同学能拿到衣服吗?
【分析】根据梯子的长和距离树干的距离求出树干的高度和2.3米比较即可得到答案.
【解答】解:由题意得,梯子顶端距离地面的距离为:
2(米),
2米<2.3米,
故这位同学不能拿到衣服;
1.5﹣0.8=0.7(米),
2.4(米),
2.3米<2.4米,
故如果再把梯子底端向树干靠近0.8米,此时这位同学能拿到衣服.
【变式5-3】(2022 泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离.
【解答】解:(1)根据勾股定理:
梯子距离地面的高度为:24米;
(2)梯子下滑了4米,
即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20,
根据勾股定理得:25,
解得CC′=8.
即梯子的底端在水平方向滑动了8米.
【题型6 勾股定理之范围影响问题】
【例6】(2022春 雁塔区校级期末)如图,有一台环卫车沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,环卫车周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若环卫车的行驶速度为每分钟50米,环卫车噪声影响该学校持续的时间有多少分钟?
【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出学校C是否会受噪声影响;
(2)利用勾股定理得出ED以及EF的长,进而得出环卫车噪声影响该学校持续的时间.
【解答】解:(1)学校C会受噪声影响.
理由:如图,过点C作CD⊥AB于D,
∵AC=150m,BC=200m,AB=250m,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
∴AC×BC=CD×AB,
∴150×200=250×CD,
∴CD120(m),
∵环卫车周围130m以内为受噪声影响区域,
∴学校C会受噪声影响.
(2)当EC=130m,FC=130m时,正好影响C学校,
∵ED(m),
∴EF=100(m),
∵环卫车的行驶速度为每分钟50米,
∴100÷50=2(分钟),
即环卫车噪声影响该学校持续的时间有2分钟.
【变式6-1】(2022春 孝南区月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.
(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;
(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.
【分析】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;
(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.
【解答】解:(1)过点A作AH⊥ON于H,
∵∠O=30°,OA=80米,
∴AHOA=40米,
∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;
(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,
由(1)知AH=40米,
∴CH30(米),
∴CN=2CH=60(米),
∴t=60÷5=12(秒),
∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.
【变式6-2】(2022春 岳麓区校级期中)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距(  )
A.12海里 B.13海里 C.14海里 D.15海里
【分析】根据题意得出∠AOB=90°,根据勾股定理即可得到结论.
【解答】解:由题意可得:BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,
故∠AOB=90°,
∴AB15(海里),
答:甲、乙两渔船相距15海里,
故选:D.
【变式6-3】(2022春 綦江区期末)今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.
(1)求∠ACB的度数;
(2)海港C受台风影响吗?为什么?
(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?
【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;
(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(3)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【解答】解:(1)∵AC=300km,BC=400km,AB=500km,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,∠ACB=90°;
(2)海港C受台风影响,理由:过点C作CD⊥AB于D,
∵△ABC是直角三角形,
∴AC×BC=CD×AB,
∴300×400=500×CD,
∴CD=240(km),
∵以台风中心为圆心周围260km以内为受影响区域,
∴海港C受台风影响;
(3)当EC=260km,FC=260km时,正好影响C港口,
∵ED(km),
∴EF=2ED=200km,
∵台风的速度为28千米/小时,
∴200÷28(小时).
答:台风影响该海港持续的时间为小时.
【题型7 勾股定理之选址使到两地距离相等】
【例7】(2022春 启东市期中)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.
【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.
【解答】解:设CE=x,则DE=20﹣x,
由勾股定理得:
在Rt△ACE中,AE2=AC2+CE2=82+x2,
在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,
由题意可知:AE=BE,
所以:82+x2=142+(20﹣x)2,解得:x=13.3
所以,E应建在距C点13.3km,
即CE=13.3km.
【变式7-1】(2022 市北区期末)如图,某学校(A点)到公路(直线l)的距离为300米,到公交车站(D点)的距离为500米,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,则商店C与车站D之间的距离是  312.5 米.
【分析】过点A作AB⊥l于B,根据勾股定理解答即可.
【解答】解:过点A作AB⊥l于B,则AB=300m,AD=500m.
∴BD400m,
设CD=xm,则CB=(400﹣x)m,
根据勾股定理得:x2=(400﹣x)2+3002,
x2=160000+x2﹣800x+3002,
800x=250000,
x=312.5.
答:商店与车站之间的距离为312.5米,
故答案为:312.5.
【变式7-2】(2022 牡丹区期末)在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高  7.5 米.
【分析】首先设树的高度为x米,用x表示BD=x﹣5,AD=20﹣x,再利用勾股定理就可求出树的高度.
【解答】解:设树的高度为x米.
∵两只猴子所经过的距离相等,BC+AC=15,
∴BD=x﹣5,AD=20﹣x,
在Rt△ACD中根据勾股定理得,
CD2+AC2=AD2,
x2+100=(20﹣x)2,
x=7.5,
故答案为:7.5.
【变式7-3】(2022 和平区三模)如图,某校A距离笔直的公路l为3km,与该公路上某车站D的距离为5km,现要在公路旁建一个小商店C,使之与学校A及车站D的距离相等,则BC= km .
【分析】根据题意,AC=CD,∠ABD=90°,由AB、AD的长易求BD,设CD=x米,则AC=x,BC=BD﹣x.在直角三角形ABC中运用勾股定理得关系式求解即可.
【解答】解:根据题意得:AC=CD,∠ABD=90°.
在直角三角形ABD中,
∵AB=3km,AD=5km,
∴BD4km
设CD=AC=x米,BC=(4﹣x)km,
在Rt△ABC中,AC2=AB2+BC2,
即x2=32+(4﹣x)2,
解得:x,
∴BC=BD﹣CD=4km.
故答案为:km.
【题型8 勾股定理应用之其他问题】
【例8】(2022 龙岗区校级月考)如图,某住宅社区在相邻两楼之间修建一个上方是以AB为直径的半圆,下方是长方形的仿古通道,已知AD=2.3米,CD=2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由.
【分析】根据题意得出EF的长,进而得出EH的长,即可得出答案.
【解答】解:∵车宽1.6米,
∴卡车能否通过,只要比较距厂门中线0.8米处的高度与车高.
在Rt△OEF中,由勾股定理可得:
EF0.6(m),
EH=EF+FH=0.6+2.3=2.9>2.5,
∴卡车能通过此门.
【变式8-1】(2022 洛宁县期末)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?
【分析】直接利用勾股定理得出BC的长,进而得出汽车的速度,即可比较得出答案.
【解答】解:超速.理由如下:
在Rt△ABC中,AC=60m,AB=100m,
由勾股定理可得BC80m,
∴汽车速度为80÷4=20m/s=72km/h,
∵72>60,
∴这辆小汽车超速了.
【变式8-2】(2022春 合肥期中)如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.
【分析】直接构造直角三角形进而利用勾股定理得出答案.
【解答】解:如图所示:过点A作AC⊥CB于C,
则在Rt△ABC中,AC=40+40=80(米),
BC=70﹣20+10=60(米),
故终止点与原出发点的距离AB100(米),
答:终止点B与原出发点A的距离AB为100m.
【变式8-3】(2022 广陵区二模)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.
(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):
①该屏幕的长= 16 寸,宽= 12 寸;
②已知“屏幕浪费比”,求该电视机屏幕的浪费比.
(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:2.2,结果精确到0.1)
【分析】(1)①根据电视机屏幕的长宽比为4:3,设长为4x,则宽为3x,再由勾股定理求出x的值,进而可得出结论;
②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸),求出a的值,得出黑色带子的宽度,进而得出其比值;
(2)根据题意得出,,得PQBC,FGEF.再由S矩形EFGH=S矩形MNPQ即可得出,进而可得出结论.
【解答】解:(1)①∵电视机屏幕的长宽比为4:3,
∴设长为4x,则宽为3x,
∵电视机屏幕为20寸,
∴(4x)2+(3x)2=202,解得x=4,
∴4x=16,3x=12,
∴该屏幕的长为16寸,宽为12寸;
故答案为:16;12.
②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸).
∵,解得 a.
∴黑色带子的宽的和=12.
∴屏幕浪费比;
(2)由题意:,,得:PQBC,FGEF.
∵S矩形EFGH=S矩形MNPQ,
∴BC BC=EF EF.
∴,
∴1.8.
答:这种屏幕的长宽比约为1.8.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)