浙教版第1章《三角形的初步认识》专题3 全等三角形常见五种辅助线添法专训(解析版)

文档属性

名称 浙教版第1章《三角形的初步认识》专题3 全等三角形常见五种辅助线添法专训(解析版)
格式 doc
文件大小 6.6MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-09-30 20:16:48

图片预览

文档简介

中小学教育资源及组卷应用平台
专题03 全等三角形常见五种辅助线添法专训
【目录】
辅助线添法一 倍长中线法
辅助线添法二 截长补短法
辅助线添法三 旋转法
辅助线添法四 作平行线法
辅助线添法五 作垂线法
【经典例题一 倍长中线法】
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
【常见模型】
【例1】(2022秋·北京大兴·八年级统考期末)如图,中,,是中线,有下面四个结论:
①与的面积相等;
②;
③若点是线段上的一个动点(点不与点,重合),连接,,则的面积比的面积大;
④点,是,所在直线上的两个动点(点与点不重合),若,连接,,则.
所有正确结论的序号是(  )
A.①②③④ B.①②④ C.②③ D.①③④
【变式训练】
1.如图,已知AD是△ABC中BC边上的中线,AB=5,AC=3,则AD的取值范围是(  )
A.2<AD<8 B.1<AD<4 C.2<AD<5 D.4≤AD≤8
2.如图,在,点是上的一点,连接,平分,交于中点,连接,若,则___________.

3.【阅读理解】
课外兴趣小组活动时,老师提出了如下问题:
如图1,中,若,求边上的中线的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:如图2,延长到点E,使,连接.请根据小明的方法思考:
(1)如图2,由已知和作图能得到的理由是    .
A.SSS B.SAS C.AAS D.ASA
(2)如图2,长的取值范围是   .
A. B. C. D.
【感悟】
解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.
【问题解决】
(3)如图3,是的中线,交于点E,交于F,且.求证:.
【经典例题二 截长补短法】
【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).
【模型图示】
(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.
例:如图,求证BE+DC=AD
方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
(2)补短:将短线段延长,证与长线段相等
例:如图,求证BE+DC=AD
方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
【例2】(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形以D为顶点作,交边、于M、N.
(1)若,,两边分别交、于点M、N,、、三条线段之间有何种数量关系?证明你的结论;
(2)当时,、、三条线段之间有何数量关系?证明你的结论;
(3)如图③,在(2)的条件下,若将M、N改在、的延长线上,完成图3,其余条件不变,则、、之间有何数量关系(直接写出结论,不必证明)
【变式训练】
1.(2023·江苏·八年级假期作业)如图,在中,AD平分,,,,则AC的长为( )
A.3 B.9 C.11 D.15
2.(2023·全国·八年级假期作业)如图,为等边三角形,若,则__________(用含的式子表示).
3.(2023春·湖北咸宁·八年级咸宁市温泉中学校联考期中)如图,四边形是正方形,E是边的中点,,且交正方形外角的平分线于点F.
(1)求证:;
(2)连接,则的值为__________;
(3)连接,设与交于点H,连接,探究之间的关系.
【经典例题三 旋转法】
【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.
注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.
【模型图示】
例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN
方法:旋转△ABM至△ACF处,证NE=MN
【例3】(2022秋·湖北孝感·八年级统考期中)已知:,,.
(1)如图1当点在上,______.
(2)如图2猜想与的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)
【变式训练】
1.(2023春·全国·八年级专题练习)(1)如图①,在正方形中,、分别是、上的点,且,连接,探究、、之间的数量关系,并说明理由;
(2)如图②,在四边形中,,,、分别是、上的点,且,此时(1)中的结论是否仍然成立?请说明理由.
2.(2021秋·天津和平·八年级校考期中)在中,,,是过A的一条直线,于点D,于E,
(1)如图(1)所示,若B,C在的异侧,易得与,的关系是____________;
(2)若直线绕点A旋转到图(2)位置时,(),其余条件不变,问与,的关系如何?请予以证明;
(3)若直绕点A旋转到图(3)的位置,(),问与,的关系如何?请直接写出结果,不需证明.
3.(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.
(1)操作发现
如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为   ;线段BD、AB、EB的数量关系为   ;
(2)猜想论证
当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;
(3)拓展延伸
若AB=5,BD=7,请你直接写出△ADE的面积.
【经典例题四 作平行线法】
【例4】(2022秋·江苏·八年级专题练习)如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.
求让:
【变式训练】
1.(2022秋·江苏·八年级专题练习) P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
2.(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且
∠BAE=∠CDE,求证:AB=CD
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.
图(1):延长DE到F使得EF=DE
图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F
图(3):过C点作CF∥AB交DE的延长线于F.
3.(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:
(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.
【经典例题五 作垂直法】
【例5】(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1,是中的遥望角.
①直接写出与的数量关系___________;
②连接AE,猜想与的数量关系,并说明理由.
(2)如图2,四边形ABCD中,,点E在BD的延长线上,连CE,若已知,求证:是中的遥望角.
【变式训练】
1.(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC=BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.
(1)求证:△EAF≌△DAF;
(2)如图2,连接CF,若EF=FC,求∠DCF的度数.
2.(2023春·全国·七年级专题练习)阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.
①如图1,延长DE到点F,使EF=DE,连接BF;
②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.
(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.
3.(2022秋·八年级课时练习)如图,阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE. 求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.
【重难点训练】
1.(2023春·全国·七年级专题练习)如图,在中,为边上的中线,若,,则的取值范围是(  )
A. B. C. D.
2.(2023春·广东湛江·八年级校考期中)已知如图,BD为ABC的角平分线,且BD=BC,E为BD延长线上一点,BE=BA,过点E作EF⊥AB于点F,则下列结论:①EBC可由ABD绕点B旋转而得到;②∠BCE+∠BCD=180 ;③∠ABE=∠DAE;④BA+BC=2BF;正确的个数为( )
A.4 B.3 C.2 D.1
3.(2023·全国·八年级假期作业)如图,中,,点在的边上,,以为直角边在同侧作等腰直角三角形,使,连接,若,则与的数量关系式是( )
A. B. C. D.
4.(2022秋·福建龙岩·八年级校考阶段练习)如图,在中,,,点的坐标为,点的坐标为,求点的坐标( )
A. B. C. D.
5.(2023·江苏·八年级假期作业)如图,已知中,,D为上一点,且,则的度数是_________.
6.(2023春·全国·七年级专题练习)如图,在等腰中,,D为内一点,且,若,则的面积为________.
7.(2023春·全国·七年级专题练习)如图,在中,,,,且AE=AB,连接交的延长线于点,,则______.
8.(2023秋·广东广州·八年级华南师大附中校考期末)已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.
9.(2022秋·浙江·八年级专题练习)【问题情境】如图1,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A点和B点的点C,连接并延长到D,使;连接并延长到E,使,连接并测量出它的长度,如果米,那么间的距离为___________米.
【探索应用】如图2,在中,若,求边上的中线的取值范围.
解决此问题可以用如下方法:延长到点E使,再连接(或将绕着点D逆时针旋转得到),把集中在中,利用三角形三边的关系即可判断,中线的取值范围是___________;
【拓展提升】如图3,在中,的延长线交于点F,求证:.
10.(2022秋·八年级课时练习)已知:等腰和等腰中,,,.
(1)如图1,延长交于点,若,则的度数为 ;
(2)如图2,连接、,延长交于点,若,求证:点为中点;
(3)如图3,连接、,点是的中点,连接,交于点,,,直接写出的面积.
11.(2023春·江苏·八年级专题练习)四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.
(1)当、都在线段上时(如图1),请证明:;
(2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;
(3)在(1)的条件下,若,,请直接写出的长为 .
12.(2022秋·八年级课时练习)(1)如图,在正方形中,、分别是,上的点,且.直接写出、、之间的数量关系;
(2)如图,在四边形中,,,、分别是,上的点,且,求证:;
(3)如图,在四边形中,,,延长到点,延长到点,使得,则结论是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.
13.(2022秋·河南商丘·八年级统考期中)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则   .(直接写出结果)
14.(2021秋·安徽六安·八年级校考期中)问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.

拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)
实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.

专题03 全等三角形常见五种辅助线添法专训
【目录】
辅助线添法一 倍长中线法
辅助线添法二 截长补短法
辅助线添法三 旋转法
辅助线添法四 作平行线法
辅助线添法五 作垂线法
【经典例题一 倍长中线法】
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
【常见模型】
【例1】(2022秋·北京大兴·八年级统考期末)如图,中,,是中线,有下面四个结论:
①与的面积相等;
②;
③若点是线段上的一个动点(点不与点,重合),连接,,则的面积比的面积大;
④点,是,所在直线上的两个动点(点与点不重合),若,连接,,则.
所有正确结论的序号是(  )
A.①②③④ B.①②④ C.②③ D.①③④
【答案】B
【分析】根据三角形中线定义和三角形面积公式可对①进行判断;延长至,使,
易证得,利用三角形三边关系可对②进行判断;再次根据三角形中线定义和三角形面积公式可对③进行判断;由,,,易证得,可得,即可对④进行判断.
【详解】解:∵是中线,

∴与的面积相等
故①正确,
延长至,使,如图
∵,,
∴(SAS),

则在中,

故②正确,
点是线段AD上的一个动点(点不与点,重合),连接,,如图,


又∵与的面积相等
∴的面积和的面积相等
故③不正确,
点,是,所在直线上的两个动点(点与点不重合),若,连接,,如图,
由,,,
∴,


故④正确,
故选:B.
【点睛】本题考查全等三角形的判定与性质,利用三角形中线的性质及倍长中线的思想是解决问题的关键.
【变式训练】
1.(2023·江苏·八年级假期作业)如图,已知AD是△ABC中BC边上的中线,AB=5,AC=3,则AD的取值范围是(  )
A.2<AD<8 B.1<AD<4 C.2<AD<5 D.4≤AD≤8
【答案】B
【分析】如图所示,延长AD到E,使,连接CE,先证,得,再由三角形任意两边之和大于第三边,两边之差小于第三边求出AE的取值范围.
【详解】
如图所示,延长AD到E,使,连接CE,
AD是△ABC中BC边上的中线,

在与中,



在中,由三角形三边关系得:

,,


【点睛】本题考查了三角形三边的关系,全等三角形的判定与性质,做辅助线构造全等三角形是解题的关键.
2.(2023春·全国·八年级期末)如图,在,点是上的一点,连接,平分,交于中点,连接,若,则___________.

【答案】
【分析】延长交于点,判定,即可得出,再根据三线合一即可得到即可解答.
【详解】解:如图,延长交于点,
∵点是的中点,
∴,
∵平行四边形中,,
∴,
∵,
∴,
∴,
∵平分,,
∴,
∴,
∵是的中点,
∴,
∴中,,
故答案为:.

【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.
3.(2023春·全国·七年级专题练习)【阅读理解】
课外兴趣小组活动时,老师提出了如下问题:
如图1,中,若,求边上的中线的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:如图2,延长到点E,使,连接.请根据小明的方法思考:
(1)如图2,由已知和作图能得到的理由是    .
A.SSS B.SAS C.AAS D.ASA
(2)如图2,长的取值范围是   .
A. B. C. D.
【感悟】
解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.
【问题解决】
(3)如图3,是的中线,交于点E,交于F,且.求证:.
【答案】(1)(2)C(3)见解析
【分析】(1)根据全等三角形的判定条件求解即可;
(2)根据全等三角形的性质得到,由三角形三边关系得到,即可求出;
(3)延长到点M,使,连接,证明,得到,由得到 ,进而推出,即可证明.
【详解】解:(1)如图2,延长到点E,使,连接.
∵为的中线,
∴,
又∵,
∴,
故答案为:;
(2)解:∵,
∴,
在中,,
∴,
∴,
故答案为:C;
(3)证明:延长到点M,使,连接,
∵是中线,
∴,
∵在和中,

∴,
∴,
∵,
∴ ,
∵,
∴,
∴,
∴.
【点睛】本题主要考查了全等三角形的性质与判定,三角形三边的关系,等腰三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.
【经典例题二 截长补短法】
【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).
【模型图示】
(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.
例:如图,求证BE+DC=AD
方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
(2)补短:将短线段延长,证与长线段相等
例:如图,求证BE+DC=AD
方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
【例2】(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形以D为顶点作,交边、于M、N.
(1)若,,两边分别交、于点M、N,、、三条线段之间有何种数量关系?证明你的结论;
(2)当时,、、三条线段之间有何数量关系?证明你的结论;
(3)如图③,在(2)的条件下,若将M、N改在、的延长线上,完成图3,其余条件不变,则、、之间有何数量关系(直接写出结论,不必证明)
【答案】(1),证明见解析;
(2),证明见解析;
(3)作图见解析,.
【分析】(1)延长到E,使,证,推出,,证,推出即可;
(2)延长到E,使,证,推出,,证,推出即可;
(3)在截取,连接,证,推出,,证,推出即可.
【详解】(1).证明如下:
如图,延长到E,使,连接.




在和中,


,.

,,

在和中,





(2).证明如下:
如图,延长到E,使,连接.



,.
在和中,


,.
,,,

,,

在和中,





(3)补充完成题图,如图所示.
.证明如下:
如上图,在上截取,连接.
,,




在和中,


,.



在和中,





【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键.
【变式训练】
1.(2023·江苏·八年级假期作业)如图,在中,AD平分,,,,则AC的长为( )
A.3 B.9 C.11 D.15
【答案】C
【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,AB=AE,再证明CD=CE,进而代入数值解答即可.
【详解】在AC上截取AE=AB,连接DE,
∵AD平分∠BAC,
∴∠BAD=∠DAC,
在△ABD和△AED中,

∴△ABD≌△AED(SAS),
∴∠B=∠AED,∠ADB =∠ADE, AB=AE,
又∠B=2∠ADB
∴∠AED=2∠ADB,∠BDE=2∠ADB,
∵∠AED=∠C+∠EDC=2∠ADB,∠BDE=∠C+∠DEC=2∠ADB,
∴∠DEC =∠EDC,
∴CD=CE,
∵,,
∴AC =AE+CE=AB+CD = 5+6=11.
故选:C.
【点睛】本题考查全等三角形的判定和性质;利用了全等三角形中常用辅助线-截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.
2.(2023·全国·八年级假期作业)如图,为等边三角形,若,则__________(用含的式子表示).
【答案】/
【分析】在BD上截取BE=AD,连结CE,可证得 ,从而得到CE=CD,∠DCE=∠ACB=60°,从而得到是等边三角形,进而得到∠BDC=60°,则有,即可求解.
【详解】解:如图,在BD上截取BE=AD,连结CE,
∵为等边三角形,
∴BC=AC,∠BAC=∠ABC=∠ACB=60°,
∵,BE=AD,
∴ ,
∴CE=CD,∠BCE=∠ACD,
∴∠BCE+∠ACE=∠ACD+∠ACE,
∴∠DCE=∠ACB=60°,
∵CE=CD,
∴是等边三角形,
∴∠BDC=60°,
∴.
故答案为:
【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,解题的关键是做出辅助线构造全等三角形是解题的关键.
3.(2023春·湖北咸宁·八年级咸宁市温泉中学校联考期中)如图,四边形是正方形,E是边的中点,,且交正方形外角的平分线于点F.
(1)求证:;
(2)连接,则的值为__________;
(3)连接,设与交于点H,连接,探究之间的关系.
【答案】(1)见解析
(2)
(3),理由见解析
【分析】(1)取的中点,并连接,通过正方形和等腰直角三角形的基本性质,证明,即可得出结论;
(2)连接后,由点,分别为,的中点,推出为的中位线,再结合全等三角形的性质转换边长,根据中位线定理求解即可;
(3)结合(1)的结论,可得到,从而考虑运用“半角”模型,因此延长至点,使得,连接,运用两次基础全等证明即可得出结论.
【详解】(1)证明:如图所示,取的中点,并连接,
∴,
∵E是边的中点,
∴,
∵四边形是正方形,
∴,
∵,,
∴,,
∴,
∵,
∴,,
∵正方形外角的平分线为,
∴,
∴,
在和中,
∴,
∴;
(2)解:如图所示,连接,
∵点,分别为,的中点,
∴为的中位线,
∴,
由(1)得,
∴,
∴,
∴,
故答案为:;
(3)解:,理由如下:
如图所示,延长至点,使得,连接,
由正方形基本性质得:,,
∴,
∴,,
由(1)知,,且,
∴,
∴,
∴,即:,
在和中,
∴,
∴,
∵,,
∴,
∴.
【点睛】本题考查正方形的性质,全等三角形判定与性质,等腰直角三角形的性质、三角形中位线定理等知识点,在证明第一小问时要合理作出辅助线,才能为后面的问题做良好的铺垫,掌握基本图形的性质,熟练运用基本定理是解题关键.
【经典例题三 旋转法】
【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.
注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.
【模型图示】
例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN
方法:旋转△ABM至△ACF处,证NE=MN
【例3】(2022秋·湖北孝感·八年级统考期中)已知:,,.
(1)如图1当点在上,______.
(2)如图2猜想与的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)
【答案】(1)
(2),理由见解析
【分析】(1)由全等可知,所以当点在上时,为等腰三角形,依据已知计算即可.
(2)因为两个三角形中有一边相等,只要找到这两个底对应高之间的关系即可.
【详解】(1)解:,

又,,

在中,,
故答案为:.
(2)解:如下图所示:过点作的边上的高,过点作的边上的高,由作图及知:
,,,
(同角的余角相等),
在与中有:
(),

,,
,,

故答案为:.
【点睛】本题考查了全等三角形性质和判定,关键是使用分析法找到:两个三角形面积相等时,底相等则高相等,从而构造全等证明对应高相等.
【变式训练】
1.(2023春·全国·八年级专题练习)(1)如图①,在正方形中,、分别是、上的点,且,连接,探究、、之间的数量关系,并说明理由;
(2)如图②,在四边形中,,,、分别是、上的点,且,此时(1)中的结论是否仍然成立?请说明理由.
【答案】(1),理由见解析;(2)成立,理由见解析
【分析】(1)典型的“夹半角模型”,延长到使得,先证,再证,最后根据边的关系即可证明;
(2)图形变式题可以参考第一问的思路,延长到使得,先证
,再证,最后根据边的关系即可证明;
【详解】解:(1)
证明:延长到,使得
连接
∵四边形是正方形
∴,
又∵

∴,



又∵


又∵

(2)
证明:延长到,使得
连接
∵,

又∵,

∴,



又∵


又∵

【点睛】本题考查了全等三角形的判定和性质,正确的根据“夹半角模型”作出辅助线是解题的关键.
2.(2021秋·天津和平·八年级校考期中)在中,,,是过A的一条直线,于点D,于E,
(1)如图(1)所示,若B,C在的异侧,易得与,的关系是____________;
(2)若直线绕点A旋转到图(2)位置时,(),其余条件不变,问与,的关系如何?请予以证明;
(3)若直绕点A旋转到图(3)的位置,(),问与,的关系如何?请直接写出结果,不需证明.
【答案】(1);(2),证明过程见解析;(3)
【分析】(1)根据已知条件证明即可得解;
(2)根据已知条件证明即可得解;
(3)根据已知条件证明即可得解;
【详解】(1)在和中,
∵,,
∴,
又∵,,
∴,
∴,,
又,
∴,
即;
故答案是:;
(2)答:;
证明:∵于D,于E,
∴.
∴,
∵,
∴.
在和中,

∴(),
∴,,
∴;
(3)∵于D,于E,
∴.
∴,
∵,
∴.
在和中,

∴(),
∴,,
∴;
【点睛】本题主要考查了全等三角形的综合应用,准确分析证明是解题的关键.
3.(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.
(1)操作发现
如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为   ;线段BD、AB、EB的数量关系为   ;
(2)猜想论证
当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;
(3)拓展延伸
若AB=5,BD=7,请你直接写出△ADE的面积.
【答案】(1)AB⊥BE,AB=BD+BE;(2)图2中BE=AB+BD,图3中,BD=AB+BE,证明见解析;(3)72或2
【分析】(1)首先通过SAS证明△ACD≌△BCE,然后利用全等三角形的性质和等量代换即可得出答案;
(2)仿照(1)中证明△ACD≌△BCE,然后利用全等三角形的性质即可得出结论;
(3)首先求出BE的长度,然后利用S△AED AD EB即可求解.
【详解】解:(1)如图1中,
∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
∵CA=CB,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CBE=∠A,
∵CA=CB,∠ACB=90°,
∴∠A=∠CBA=45°,
∴∠CBE=∠A=45°,
∴ABE=90°,
∴AB⊥BE,
∵AB=AD+BD,AD=BE,
∴AB=BD+BE,
故答案为AB⊥BE,AB=BD+BE.
(2)①如图2中,结论:BE=AB+BD.
理由:∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
∵CA=CB,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∵AD=AB+BD,AD=BE,
∴BE=AB+BD.
②如图3中,结论:BD=AB+BE.
理由:∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
∵CA=CB,CD=CE,
∴△ACD≌△BCE(SAS)
∴AD=BE,
∵BD=AB+AD,AD=BE,
∴BD=AB+BE.
(3)如图2中,∵AB=5,BD=7,
∴BE=AD=5+7=12,
∵BE⊥AD,
∴S△AED AD EB12×12=72.
如图3中,∵AB=5,BD=7,
∴BE=AD=BD﹣AB=7﹣5=2,
∵BE⊥AD,
∴S△AED AD EB2×2=2.
【点睛】本题主要考查全等三角形,掌握全等三角形的判定及性质并分情况讨论是关键.
【经典例题四 作平行线法】
【例4】(2022秋·江苏·八年级专题练习)如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.
求让:
【答案】见详解
【分析】过点D作DE∥AC,交BC于点E,根据等边三角形和平行线的性质得∠MDE=∠MEC,DE=CE,从而证明 EMD CME,进而即可得到结论.
【详解】过点D作DE∥AC,交BC于点E,
∵是等边三角形,
∴∠B=∠ACB=60°,
∵DE∥AC,
∴∠DEB=∠ACB=60°,∠MDE=∠MEC,
∴是等边三角形,
∴BD=DE,
∵,
∴DE=CE,
又∵∠EMD=∠CME,
∴ EMD CME,
∴.
【点睛】本题主要考查等边三角形的性质和判定定理以及全等三角形的判定和性质定理,添加辅助线,构造等边三角形和全等三角形,是解题的关键.
【变式训练】
1.(2022秋·江苏·八年级专题练习) P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
【答案】(1)证明见解析;(2)DE=3.
【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;
(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DEAC,即可得出结果.
【详解】(1)如图1所示,点P作PF∥BC交AC于点F.
∵△ABC是等边三角形,
∴△APF也是等边三角形,AP=PF=AF=CQ.
∵PF∥BC,∴∠PFD=∠DCQ.
在△PDF和△QDC中,,
∴△PDF≌△QDC(AAS),
∴PD=DQ;
(2)如图2所示,过P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等边三角形,
∴∠PFD=∠QCD,△APF是等边三角形,
∴AP=PF=AF.
∵PE⊥AC,∴AE=EF.
∵AP=PF,AP=CQ,∴PF=CQ.
在△PFD和△QCD中,,
∴△PFD≌△QCD(AAS),
∴FD=CD.
∵AE=EF,∴EF+FD=AE+CD,
∴AE+CD=DEAC.
∵AC=6,∴DE=3.

【点睛】本题考查等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质,解题的关键是掌握等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质.
2.(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且
∠BAE=∠CDE,求证:AB=CD
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.
图(1):延长DE到F使得EF=DE
图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F
图(3):过C点作CF∥AB交DE的延长线于F.
【答案】选择(1)(3)证明,证明见解析
【分析】如图(1)延长DE到F使得EF=DE,证明△DCE≌△FBE,得到∠CDE=∠F,BF=DC,结合题干条件即可得到结论;如图3,过C点作CF∥AB交DE的延长线于F,得到△ABE≌△FCE,AB=FC,结合题干条件即可得到结论,
【详解】如图(1)延长DE到F使得EF=DE
在△DCE和△FBE中,
∴△DCE≌△ FBE(SAS)
∴∠CDE=∠F,BF=DC
∵∠BAE=∠CDE
∴BF=AB
∴AB= CD
如图3,过C点作CF∥AB交DE的延长线于F
在△ABE和△FCE中
∴△ABE≌△ FCE(AAS),
∴AB=FC
∵∠BAE=∠CDE
∴∠F=∠CDE
∴CD=CF
∴AB=CD
【点睛】此题考查全等三角形的判定与性质和等腰三角形的性质,解题关键在于利用三角形全等的性质证明
3.(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:
(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.
【答案】(1)DM=EM.理由见详解;
(2)成立,理由见详解;
(3)MD=ME.
【分析】(1)DM=EM;过点E作EF//AB交BC于点F,然后利用平行线的性质和已知条件可以证明△DBM≌△EFM,接着利用全等三角形的性质即可证明题目的结论;
(2)成立;过点E作EF//AB交CB的延长线于点F,然后利用平行线的性质与已知条件可以证明△DBM≌△EFM,接着利用全等三角形的性质即可证明题目的结论;
(3)MD=ME.过点E作EF//AB交CB的延长线于点F,然后利用平行线的性质和已知条件得到△DBM∽△EFM,接着利用相似三角形的性质即可得到结论;
【详解】(1)解:DM=EM;
证明:过点E作EF//AB交BC于点F,
∵AB=AC,
∴∠ABC=∠C;
又∵EF//AB,
∴∠ABC=∠EFC,
∴∠EFC=∠C,
∴EF=EC.
又∵BD=EC,
∴EF=BD.
又∵EF//AB,
∴∠ADM=∠MEF.
在△DBM和△EFM中

∴△DBM≌△EFM,
∴DM=EM.
(2)解:成立;
证明:过点E作EF//AB交CB的延长线于点F,
∵AB=AC,
∴∠ABC=∠C;
又∵EF//AB,
∴∠ABC=∠EFC,
∴∠EFC=∠C,
∴EF=EC.
又∵BD=EC,
∴EF=BD.
又∵EF//AB,
∴∠ADM=∠MEF.
在△DBM和△EFM中
∴△DBM≌△EFM;
∴DM=EM;
(3)解:过点E作EF//AB交CB的延长线于点F,
∵∠DBM=∠EFM,∠DMB=∠EMF
∴△DBM∽△EFM,
∴BD:EF=DM:ME,
∵AB=AC,
∴∠ABC=∠C,
∵∠F=∠ABC,
∴∠F=∠C,
∴EF=EC,
∴BD:EC=DM:ME=1:2,
∴MD=ME.
【点睛】本题主要考查了三角形综合,涉及了等腰三角形性质和判定、全等三角形的判定与性质、相似三角形的判定和性质,利用平行构造全等三角形是解题关键.
【经典例题五 作垂直法】
【例5】(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1,是中的遥望角.
①直接写出与的数量关系___________;
②连接AE,猜想与的数量关系,并说明理由.
(2)如图2,四边形ABCD中,,点E在BD的延长线上,连CE,若已知,求证:是中的遥望角.
【答案】(1)①;②,理由见解析
(2)见解析
【分析】(1)①运用角平分线的定义,以及三角形外角的性质,推导得到,,即、可得出;②过点作交延长线于点,过点作交于点,过点作交延长线于点,运用角平分线的性质及判定定理可证,由,可得;
(2)过作交于点,过作交延长线于点,先证四边形是矩形,再证,最后证得平分,平分即可.
【详解】(1)解:①∵平分,即,
∴.
∵平分,即,
∴.
又∵,
∴.
②猜想:,理由如下:
如图2,过点作交延长线于点,过点作交于点,过点作交延长线于点,
∵平分,,,
∴,
同理,,
∴,
∵,,
∴平分,即,
∵,
∴.
(2)证明:如图3,过作交于点,过作交延长线于点,
∵,,,
∴,,,
∴四边形是矩形,
∴,
即,
∵,
∴,
∴,
∵,,
∴,
在与中,
∵,
∴,
∴,
∵,,
∴平分,
∴,即平分,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
∴平分,
∵平分,
∴是中的遥望角.
【点睛】本题考查了角平分线的性质及判定,全等三角形的性质及判定,熟练掌握角平分线判定定理及相关性质是解题的关键.
【变式训练】
1.(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC=BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.
(1)求证:△EAF≌△DAF;
(2)如图2,连接CF,若EF=FC,求∠DCF的度数.
【答案】(1)见解析;(2)∠DCF=45°.
【分析】(1)由垂直定义可得∠CAD=∠ACB=90°,再根据题意得∠EAF=∠DAF,即可证得结论;
(2)过点F作FM⊥FA交AC于点M,由“AAS”可证△AEF≌△MCF,可得∠AFE=∠MFC,EF=DF,可证△CDF是等腰直角三角形,可得∠DCF=45°.
【详解】证明:(1)∵AD⊥AC,BC⊥AC,
∴∠CAD=∠ACB=90°,
∵AC=BC,
∴∠BAC=∠B=45°,
∴∠EAF=180°﹣∠BAC=135°,∠DAF=∠CAD+∠BAC=135°,
∴∠EAF=∠DAF,
在△EAF和△DAF中,

∴△EAF≌△DAF(SAS);
(2)如图2,过点F作FM⊥FA交AC于点M,
∵FA⊥FM,∠FAM=45°,
∴∠FMA=45°=∠FAM,
∴FA=FM,∠FMC=∠FAE=135°,
∵EF=FC,
∴∠FEM=∠FCA,
在△AEF和△MCF中,

∴△AEF≌△MCF(AAS),
∴∠AFE=∠MFC,EF=DF,
∵△EAF≌△DAF,
∴∠EFA=∠DFA,
∴∠DFA=∠MFC,
∴∠AFM=∠DFC=90°,
∵DF=EF=CF,
∴△CDF是等腰直角三角形,
∴∠DCF=45°.
【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.
2.(2023春·全国·七年级专题练习)阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.
①如图1,延长DE到点F,使EF=DE,连接BF;
②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.
(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.
【答案】(1)①见解析;②见解析;(2)见解析;
【分析】(1)①如图1,延长DE到点F,使EF=DE,连接BF,△BEF≌△CED,∠BAE=∠F, AB=CD;
②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G,△BEF≌△CEG
△BAF≌△CDG,AB=CD;
(2)如图3,过C点作CM∥AB,交DE的延长线于点M,则∠BAE=∠EMC,△BAE≌△CFE(AAS),∠F=∠EDC,CF=CD,AB=CD;
【详解】(1)①如图1,
延长DE到点F,使EF=DE,连接BF,
∵点E是BC的中点,∴BE=CE,
在△BEF和△CED中,

∴△BEF≌△CED(SAS),∴BF=CD,∠F=∠CDE,
∵∠BAE=∠CDE,∴∠BAE=∠F,
∴AB=BF,∴AB=CD;
②如图2,
分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G,
∴∠F=∠CGE=∠CGD=90°,
∵点E是BC的中点,∴BE=CE,
在△BEF和△CEG中,

∴△BEF≌△CEG(AAS),∴BF=CG,
在△BAF和△CDG中,

∴△BAF≌△CDG(AAS),
∴AB=CD;
(2)如图3,
过C点作CM∥AB,交DE的延长线于点M,
则∠BAE=∠EMC,
∵E是BC中点,
∴BE=CE,
在△BAE和△CME中,

∴△BAE≌△CFE(AAS),∴CF=AB,∠BAE=∠F,
∵∠BAE=∠EDC,
∴∠F=∠EDC,∴CF=CD,∴AB=CD.
【点睛】本题主要考查了全等三角形的判定和性质,对顶角相等,平行线的性质,构造出全等三角形是解本题的关键.
3.(2022秋·八年级课时练习)如图,阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE. 求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.
【答案】见解析
【分析】方法一:如图1,作BF⊥DE交DE的延长线于点F,CG⊥DE于点G,先证明△BFE≌△CGE,得BF=CG,再证明△ABF≌△DCG即可;
方法二:如图2中,作CF∥AB交DE的延长线于点F,先证明CF=CD,再证明△ABE≌△FCE即可.
【详解】证明:方法一:如图1,作BF⊥DE交DE的延长线于点F,CG⊥DE于点G.
∴∠F=∠CGE=90°,
在△BFE和△CGE中,,
∴△BFE≌△CGE(AAS),
∴BF=CG,
在△ABF和△DCG中,,
∴△ABF≌△DCG(AAS),
∴AB=CD;
方法二:如图2,作CF∥AB交DE的延长线于点F.
∴∠F=∠BAE.
又∵∠BAE=∠D,
∴∠F=∠D,
∴CF=CD,
在△ABE和△FCE中,,
∴△ABE≌△FCE(AAS),
∴AB=CF,
∴AB=CD.
【点睛】本题考查全等三角形的判定和性质,解题的关键是添加辅助线构造全等三角形,学会添加常用辅助线,属于中考常考题型.
【重难点训练】
1.(2023春·全国·七年级专题练习)如图,在中,为边上的中线,若,,则的取值范围是(  )
A. B. C. D.
【答案】A
【分析】延长到E,使,然后利用“边角边”证明,根据全等三角形对应边相等可得,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出的取值范围,然后即可得解.
【详解】解:如图,延长到E,使,
∵为边上的中线,
∴,
在和中,

∴(SAS),
∴,
∵,,
∴,
即,
∵,
∴.
故选:A.
【点睛】本题考查了三角形的三边关系,全等三角形的判定与性质,遇中点加倍延长,作辅助线构造出全等三角形是解题的关键.
2.(2023春·广东湛江·八年级校考期中)已知如图,BD为ABC的角平分线,且BD=BC,E为BD延长线上一点,BE=BA,过点E作EF⊥AB于点F,则下列结论:①EBC可由ABD绕点B旋转而得到;②∠BCE+∠BCD=180 ;③∠ABE=∠DAE;④BA+BC=2BF;正确的个数为( )
A.4 B.3 C.2 D.1
【答案】A
【分析】利用SAS可证明△ABD≌△EBC,即可得出①正确;由①中△ABD≌△EBC可得∠BCE=∠BDA,由BC=BD可得∠BCD=∠BDC,由平角定义可得∠BDA+∠BDC=180°,即∠BCE+∠BCD=180°,②正确;根据等腰三角形的性质及三角形内角和定理可得∠BCD=90°-∠EBC,∠AED=90°-∠ABD,可得∠BDC=∠AED,即∠BCD=∠AED进而可得∠ABE=∠DAE;可得③正确;作EG⊥BC,交BC延长线于点G,利用HL可得Rt△BEF≌Rt△BEG,可得BF=BG,由①可得AD=CE,由③可得∠ADE=∠BDC=∠BCD=∠AED,可得AE=AD,即可得出AE=CE,利用HL可证明Rt△AEF≌Rt△CEG,可得AF=CG,根据线段的和差关系可得BA+BC=2BF,可得④正确;综上即可得答案.
【详解】∵BD为ABC的角平分线,
∴∠ABD=∠EBC,
在△ABD和△EBC中,,
∴△ABD≌△EBC,
∴EBC可由ABD绕点B旋转而得到,故①正确,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∵BC=BD,
∴∠BCD=∠BDC,
∴∠BCE+∠BCD=∠BDA+∠BDC=180 ;故②正确,
∵AB=BE,BD=BC,
∴∠BCD==90°-∠EBC,∠AED==90°-∠ABD,
∵∠ABD=∠EBC,
∴∠BCD=∠AED,
∵∠ADE=∠BDC,
∴∠ABE=∠DAE,故③正确,
作EG⊥BC,交BC延长线于点G,
∵BD为∠ABC的角平分线,EF⊥AB,
∴EF=EG,
在Rt△BEF和Rt△BEG中,,
∴Rt△BEF≌Rt△BEG,
∴,
∵△ABD≌△EBC,
∴AD=CE,
∵∠ADE=∠BDC=∠BCD=∠AED,
∴AD=AE,
∴AE=CE,
在Rt△AEF和Rt△CEG中,,
∴Rt△AEF≌Rt△CEG,
∴AF=CG,
∴AB+BC=BF+AF+BG-CG=2BF,故④正确,
综上所述,正确的结论为①②③④,
故选:A.
【点睛】本题考查全等三角形的判断与性质及角平分线的性质,角平分线上的点到角两边的距离相等;全等三角形的判断方法有:SSS、SAS、ASA、AAS、HL,熟练掌握并灵活运用适当的方法是解题关键.
3.(2023·全国·八年级假期作业)如图,中,,点在的边上,,以为直角边在同侧作等腰直角三角形,使,连接,若,则与的数量关系式是( )
A. B. C. D.
【答案】B
【分析】作EF⊥AC,垂足为F,根据全等的条件可得,△DBC≌△EDF,可得CD=EF=m,S△BDE+ S△BDC+ S△ADE,可得出m+n=5.
【详解】
解:作EF⊥AC,垂足为F
∴∠EFD=
∴∠BDC+∠DBC=90°
∵三角形是等腰直角三角形,
∴∠EDB=90°,
∴∠EDF+∠BDC=90°,
∴∠EDF=∠DBC
在△DBC和△EDF中
∴△DBC≌△EDF(AAS)
∴CD=EF=m,
∵AC=3,
∴AD=AC-CD=3-m
∵S△BDE+ S△BDC+ S△ADE

=
化简得:

∵n是的斜边,m是直角边
∴n-m>0

故答案选:B
【点睛】本题主要考查了构造三角形全等,割补法求面积,因式分解,解决本题的关键是构造全等三角表示出面积.
4.(2022秋·福建龙岩·八年级校考阶段练习)如图,在中,,,点的坐标为,点的坐标为,求点的坐标( )
A. B. C. D.
【答案】D
【分析】由题意过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.
【详解】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,
∵∠ACB=90°,
∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中,
∴△ADC≌△CEB(AAS),
∴DC=BE,AD=CE,
∵点C的坐标为(-2,0),点A的坐标为(-6,3),
∴OC=2,AD=CE=3,OD=6,
∴CD=OD-OC=4,OE=CE-OC=3-2=1,
∴BE=4,
∴则B点的坐标是(1,4).
故选:D.
【点睛】本题考查等腰直角三角形的性质、全等三角形的性质和判定、坐标与图形特点,本题能根据AAS证明两三角形全等是关键,利用坐标与图形特点根据坐标写出线段的长,反之,能根据线段的长写出B的坐标,注意象限的符号问题.
5.(2023·江苏·八年级假期作业)如图,已知中,,D为上一点,且,则的度数是_________.
【答案】20°
【分析】延长至点E使,连接,证明是等边三角形,设,则,再证明,即可得到结果.
【详解】解:如图,延长至点E使,连接.
∴,
∵,
∴.
∵,
∴是等边三角形,
∴,
∵,
∴设,则.在与中,
∵,
∴,
∴.
∵,
∴,
∴,
∴.
故答案是.
【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,准确分析计算是解题的关键.
6.(2023春·全国·七年级专题练习)如图,在等腰中,,D为内一点,且,若,则的面积为________.
【答案】8
【分析】由线段CD的长求的面积,故过B作CD的垂线,则由三角形面积公式可知:,再由题中的和等腰直角三角形ABC,即可求证,最后由即可求解.
【详解】解:过点B作CD的垂线,交CD的延长线于点E
故答案是:8.
【点睛】本题主要考查全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线.
7.(2023春·全国·七年级专题练习)如图,在中,,,,且AE=AB,连接交的延长线于点,,则______.
【答案】
【分析】在CD上截取CG=CF,连接AG,可得,设AC=CD=3x,则CF=CG=2x,GD=x,再证明,进而即可求解.
【详解】解:在CD上截取CG=CF,连接AG,
∵AC=CD,∠ACG=∠DCF=90°,
∴,
∴∠AGC=∠CFD,
设AC=CD=3x,则CF=CG=2x,GD=x,
∵∠EAB=∠EAF+∠CAB=∠CAB+∠B=90°,
∴∠EAF=∠B,
∴∠E=∠CFD-∠EAF=∠AGC-∠B=∠GAB,
又∵AE=AB,
∴,
∴AF=BG=5x,
∴BD=BG-GD=4x,
∴.
【点睛】本题主要考查全等三角形的判定和性质,添加辅助线,构造全等三角形,是解题的关键.
8.(2023秋·广东广州·八年级华南师大附中校考期末)已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.
【答案】3<AD<7
【分析】连接AD并延长到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.
【详解】
如图,连接AD并延长到点E,使DE=DA,连接BE,
∵在△ABC中,AD是BC边上的中线
∴BD=CD
在△BDE和△CDA中
∴△BDE≌△CDA(SAS)
∴BE=CA=4
在△ABE中,AB+BE>AE,且AB﹣BE<AE
∵AB=10,AC=4,
∴6<AE<14
∴3<AD<7
故答案为3<AD<7
【点睛】本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.
9.(2022秋·浙江·八年级专题练习)【问题情境】如图1,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A点和B点的点C,连接并延长到D,使;连接并延长到E,使,连接并测量出它的长度,如果米,那么间的距离为___________米.
【探索应用】如图2,在中,若,求边上的中线的取值范围.
解决此问题可以用如下方法:延长到点E使,再连接(或将绕着点D逆时针旋转得到),把集中在中,利用三角形三边的关系即可判断,中线的取值范围是___________;
【拓展提升】如图3,在中,的延长线交于点F,求证:.
【答案】(1)100米;(2)1<AD<4;(3)见详解
【分析】(1)证明△ABC≌△DEC,由全等三角形的性质即可得AB=DE;
(2)延长到点E使,再连接,由“SAS”可证△ADC≌△EDB,可得AC=BE=3,由三角形三边关系可得1<AD<4;
(3)在BC上截取BG=AF,易证△ABG≌△ADF,可得DF=AG和∠DFA=∠BGA,即可求证△ACG≌△EAF,可得GE=AF,即可解题.
【详解】(1)解:在△ABC和△DEC中,

∴△ABC≌△DEC(SAS),
∴DE=AB=100米;
故答案为:100米
(2)延长到点E使,再连接
如图所示
∵AD=DE,CD=BD,∠ADC=∠BDE,
∴△ADC≌△EDB(SAS)
∴AC=BE=3,
∵在△ABE中,AB﹣BE<AE<AB+BE
∴2<2AD<8,
∴1<AD<4,
故答案为:1<AD<4;
(3)证明:在BC上截取BG=AF,
∵∠BAD=∠CAE=∠ACB=90°
∴∠BAC+∠ABC=∠BAC+∠DAF=90°
∴∠CBA=∠DAF,
在△ABG和△ADF中,

∴△ABG≌△ADF,(SAS)
∴DF=AG,∠DFA=∠BGA,
∴∠EFA=∠CGA,
∵在△ACG和△EAF中,

∴△ACG≌△EAF(AAS)
∴EE=AG=FD.

【点睛】考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
10.(2022秋·八年级课时练习)已知:等腰和等腰中,,,.
(1)如图1,延长交于点,若,则的度数为 ;
(2)如图2,连接、,延长交于点,若,求证:点为中点;
(3)如图3,连接、,点是的中点,连接,交于点,,,直接写出的面积.
【答案】(1);(2)见解析;(3)
【分析】(1)由已知条件可得,对顶角,则,根据即可的;
(2)过点作的垂线交的延长线于,证明,得,进而可得,再证明即可得证点为中点;
(3)延长至,使得,连接,设交于点,先证明,进而证明,根据角度的计算以及三角形内角和定理求得,进而证明,再根据,证明,根据已知条件求得最后证明即可.
【详解】(1)设交于,如图1,
是等腰和是等腰

故答案为
(2)如图2,过点作的垂线交的延长线于,
是等腰和是等腰


即是的中点
(3)延长至,使得,连接,设交于点,如图

是等腰和是等腰
在与中,
(SAS)

点是的中点

(SAS)
(SAS)



【点睛】本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.
11.(2023春·江苏·八年级专题练习)四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.
(1)当、都在线段上时(如图1),请证明:;
(2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;
(3)在(1)的条件下,若,,请直接写出的长为 .
【答案】(1)证明见解析;(2).证明见解析;(3).
【分析】(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=QN,再根据AQ+AN=QN整理即可得证;
(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;
(3)过点M作MH∥AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB-AE-GE代入数据进行计算即可求出BG,从而得到BM的长.
【详解】解:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,
则DM=DQ,AQ=BM,∠ADQ=∠BDM,∠QAD=∠CBD=90°,
∴点Q在直线CA上,
∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD-∠MDN=120°-60°=60°,
∴∠QDN=∠MDN=60°,
∵在△MND和△QND中,

∴△MND≌△QND(SAS),
∴MN=QN,
∵QN=AQ+AN=BM+AN,
∴BM+AN=MN;
(2):.
理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,
则DN=DP,AN=BP,
∵∠DAN=∠DBP=90°,
∴点P在BM上,
∵∠MDP=∠ADB-∠ADM-∠BDP=120°-∠ADM-∠ADN=120°-∠MDN=120°-60°=60°,
∴∠MDP=∠MDN=60°,
∵在△MND和△MPD中,

∴△MND≌△MPD(SAS),
∴MN=MP,
∵BM=MP+BP,
∴MN+AN=BM;
(3)如图,过点M作MH∥AC交AB于G,交DN于H,
∵△ABC是等边三角形,
∴△BMG是等边三角形,
∴BM=MG=BG,
根据(1)△MND≌△QND可得∠QND=∠MND,
根据MH∥AC可得∠QND=∠MHN,
∴∠MND=∠MHN,
∴MN=MH,
∴GH=MH-MG=MN-BM=AN,
即AN=GH,
∵在△ANE和△GHE中,

∴△ANE≌△GHE(AAS),
∴AE=EG=2.1,
∵AC=7,
∴AB=AC=7,
∴BG=AB-AE-EG=7-2.1-2.1=2.8,
∴BM=BG=2.8.
故答案为:2.8
【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,(3)作平行线并求出AN=GH是解题的关键,也是本题的难点.
12.(2022秋·八年级课时练习)(1)如图,在正方形中,、分别是,上的点,且.直接写出、、之间的数量关系;
(2)如图,在四边形中,,,、分别是,上的点,且,求证:;
(3)如图,在四边形中,,,延长到点,延长到点,使得,则结论是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.
【答案】(1),理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE FD.理由见详解.
【分析】(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;
(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE BG=BE DF.所以(1)的结论在(3)的条件下是不成立的.
【详解】(1)解:,理由如下:
延长CD,使DM=BE,连接AM,
∵在正方形中,AB=AD,∠B=∠ADM=90°,
∴,
∴∠BAE=∠DAM,AE=AM,
∵,
∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,
∴∠EAF=∠MAF=45°,
又∵AF=AF,AE=AM,
∴,
∴EF=MF=MD+DF=BE+DF;
(2)在CD的延长线上截取DG=BE,连接AG,如图,
∵∠ADF=90°,∠ADF+∠ADG=180°,
∴∠ADG=90°,
∵∠B=90°,
∴∠B=∠ADG=90°,
∵BE=DG,AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
∵,
∴∠EAF=∠FAG,
又∵AF=AF,AE=AG,
∴△AEF≌△AGF(SAS),
∴EF=FG=DF+DG=EB+DF;
(3)结论EF=BE+FD不成立,应当是EF=BE FD.理由如下:
如图,在BE上截取BG,使BG=DF,连接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵在△ABG与△ADF中,

∴△ABG≌△ADF(SAS).
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.
∴∠GAE=∠BAD=∠EAF.
∵AE=AE,AG=AF.
∴△AEG≌△AEF.
∴EG=EF,
∵EG=BE BG
∴EF=BE FD.
【点睛】本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.
13.(2022秋·河南商丘·八年级统考期中)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则   .(直接写出结果)
【答案】(1)证明见解析;(2)证明见解析;(3)或
【分析】(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
【详解】(1)证明:∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,

∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,

∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴CG=DG=1.5,
∴AG=CG+AC=5.5,
∴,
同理,当点E在线段BC上时,AG= AC -CG+=2.5,
∴,
故答案为:或.
【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
14.(2021秋·安徽六安·八年级校考期中)问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.

拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)
实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.

【答案】(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)
【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.
【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,
∴∠ADB=∠CEA=90°
∵∠BAC=90°
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°
∴∠CAE=∠ABD
∵在△ADB和△CEA中
∴△ADB≌△CEA(AAS)
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE
即:DE=BD+CE
(2)解:数量关系:DE=BD+CE
理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,
∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
∴△ABD≌△CAE(AAS)
∴AE=BD,AD=CE,
∴DE=AD+AE=BD+CE;
(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,
由(1)可知,△AEC≌△CFB,
∴CF=AE=3,BF=CE=OE-OC=4,
∴OF=CF-OC=1,
∴点B的坐标为B(1,4).

21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)