浙教版数学八年级上册
2.7探索勾股定理——实际问题训练3
一、单选题
1.如图,矩形ABCD是一个长为20m、宽为15m的长方形草地示意图,现在有一只小狗在点A处玩耍,主人在点C处与人聊天,小狗若想快速回到主人身边,最短奔跑距离为( )
A.21m B.24m C.25m D.35m
2.如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )
A.6米 B.8米 C.10米 D.13米
3.八(3)班松松同学学习了“勾股定理”之后,为了计算如图所示的风筝高度,测得如下数据:①测得的长度为;②根据手中剩余线的长度计算出风筝线的长为;③松松身高为.若松松同学想使风筝沿方向下降,则他应该往回收线( )米.
A.7 B.8 C. D.
4.如图,架在消防车上的云梯AB长为10m,∠ADB=90°,AD=2BD,云梯底部离地面的距离BC为2m,则云梯的顶端离地面的距离AE为( )
A.(2+2)m B.(4+2)m C.(5+2)m D.7m
5.如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测点O处测得该船位于北偏东60°的方向,则该船航行的距离为( )
A. B. C. D.
6.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点开始经过个侧面缠绕一圈到达,那么用细线最短需要( )
A.12cm B.10cm C.13cm D.11cm
7.如图,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少是( )
A.4米 B.5米 C.7米 D.10米
8.如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为厘米,则底面半径为( )厘米
A.6 B.3 C.2 D.12
二、填空题
9.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.
10.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为 .
小红从家里出发向正北方向走80米,接着向正东方向走150米,现在她离家的距离
是 米.
12.如图,,,,一机器人在点B处看见一个小球从点A出发沿着方向匀速滚向点,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC为 .
13.如图,高的教学楼前有一颗高的大树,它们相距,树的顶端有一只小鸟,它要飞到楼顶上,至少要飞行 .
14.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC=10m,已知两棵树的水平距离为6m,则树甲原来高 .
三、解答题
15.围墙内一棵大树被风吹歪后斜靠在旁边的围墙上,然后在围墙的顶部被折断,树梢着地(如图),已知围墙高,树的根部到围墙的距离,树梢着地点到围墙的距离,.求大树折断前的高度.
16.如图,如在把易拉罐中水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,求此时水杯中的水深为?
17.如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A、B、C三点,且A、D、E、C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,求池塘的宽度DE.
18.如图,一架梯子长10米,斜靠在一面墙上,梯子底端离墙6米.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了2米,那么梯子的底端在水平方向滑动了多少米?
19.某条高速公路限速,如图,一辆大巴车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪C处的正前方的B处,过了,大巴车到达A处,此时测得大巴车与车速检测仪间的距离为.
(1)求的长.
(2)这辆大巴车超速了吗?
20.如图,一轮船以(海里/小时)的速度从港口出发向东北方向航行,另一轮船以的速度同时从港口出发向东南方向航行,它们离开港口两小时后分别位于,处,则两船相距多远?