中小学教育资源及组卷应用平台
学 科 数学 年 级 八年级 设计者
教材版本 浙教版 册、章 八年级上册第五章
课标要求 以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型; (2)结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法,能利用图像数形结合地分析简单的函数关系; (3)理解正比例函数和一次函数的概念,会画它们的图像,能结合图像讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题; (4)通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对己经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.
内容分析 本章的主要内容有常量、变量,函数、正比例函数和一次函数.从本章开始,学生将由常量数学的学习进变量数学的学习.通过本章的学习,学生将对数学的认识有一次重要的飞跃.函数的概念、表示法、对函数性质的研究方法等,都为今后进一步学习其他函数,以及运用函数模型解决实际问题奠定基础.另外,正比例函数、一次函数的表达式,以及它们的图象在日常生活和生产实际中有着广泛的应用 .
学情分析 学生已有的基础学生在小学时己接触到的观察与分析、字推理、正比例与反比例等内容就渗透了变化的思想: 七年级的代数式求值、探索规律等加强了学生对量的变化的“规律意识”,因此相对传统教材的使用者,使用课标教科书的学生在对事物规律的发现和探究上有明显的优势,《一次函数》一章则是在前述基础之上第一次集中的讨论变量间的关系学生学习本章常见错误与不易掌握的内容. 初次接触函数概念,学生常有一种很“虚”的感觉,常常不知从何入手,思考以往的教学,不断总结中发现,学生接受函数概念困难重要在于(1)没有很好地理解有序实数对,从而也就认识不到:函数不是数,在同一变化过程中,变量之间不是孤立的,而是相互联系,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系.函数是从数量角度反应变化规律的数学模型.
单元目标 教学目标 基本要求: (1)能在简单问题中列出变量之间的关系式; (2)能根据函数的三种表示方法解读自变量和函数值的对应关系; (3)能根据已知的函数解析式,在自变量和函数值中知一求一; (4)能用描点法画出简单函数图象; (5)能结合图像对简单实际问题中的函数关系进行分析; (6)能确定简单代数和实际问题中的函数的自变量取值范围; (7)能根据简单己知条件确定一次函数表达式; (8)会画一次函数的图象,理解一次函数的性质; (9)能用一次函数解决较简单实际问题. 较高要求: (1)探索问题中的数量关系和变化规律; (2)能根据线段长面积等几何的条件确定次函数解析式; (3)结合对函数关系的分析,尝试对变量的变化规律进行初步预测; (4)能根据一次函数的图象求三元一次方程组的近似解、一元一次不等式的解集; (5)能用一次函数解决较复杂实际问题,分析决策方案. (二)教学重点、难点 教学重点:一次函数(包括正比例函数)的概念及性质应用. 教学难点:综合运用一次函数的知识解决较复杂的实际问题.
单元知识结构框架及课时安排 (一)单元知识结构框架 教学建议: 建议:注重对基本知识和基本技能的掌握,提高基本能力. (1)函数的基本概念、函数的一般表示法和一次函数的概念图象性质等是基础知识,能画一次函数的图象,能结合图象讨论这些函数的基本性质等是基本技能,能利用一次函数解决简单实际问题是基本能力; (2)函数的图象,是函数关系的直观表现,它的本质是“坐标系中的曲线上的点的坐标反映变量之间的对应关系”; (3)求两个图像的交点坐标,就是联立解方程组; (4)计算直线与坐标轴交点时,只会机械地模仿,而不理解其几何意义; (5)不能很好地区别正比例与正比例函数是学生学习感到困难的一个主要因素:小学时学生学到的正比例与反比例是一种最初级的“变化与对应”,学生体会到的是两个变量同时扩大(或同时缩小)相同的倍数即为正比例;反之,一个扩大(或缩小)一定的倍数,而一个缩小(或扩大)相同的倍数即为反比例. 这一先入为主的理解使得学生在数系扩充到有理数(增加了负数)后对正比例函数的概念不能进行有效地顺应与正迁移,进而影响对一次函数增减性的正确理解. 内容与特点 : 1.本章是实践性很强的内容,常量、变量在同一过程中相对存在,两个变量之间的函数关系也是在问题情境中蕴含的数量关系的基础上才能建立,才真正具有意义,因此本章教学中无论是知识的发生过程,还是应用过程,都要充分运用实例,包括可以进行的实验. 2.函数的图象直观地反映了函数的性质,并且函数图象本身在解决实际问题中有许多应用.教学中要使学生明确学习函数图象的重要性,不仅要求能画出一次函数的图象,而且要理解一次函数的图象是如何反映自变量与函数之间的关系的.在解决问题的过程中体验数形结合的数学思想. 3.在运用一次函数解决实际问题时,教学中要突出数学建模的思想和过程.另外,如果遇到的问题情境比较复杂,教师首先要帮助学生理解问题,知道问题中涉及哪些量,哪些是常量,哪些是变量,以及有哪些数量关系,在解决问题的过程中还要引导学生综合运用方程,不等式等其他数学模型,在画函数图象时,由于学生缺乏实际操作的经验,对于如何建立直角坐标系,如何取单位长,怎样画不同区间内表达式不相同的函数图象等等,学生都会遇到困难,教师要耐心、细致地予以具体指导. (二)课时安排 课时编号单元主要内容课时数 5.1 常量与变量15.2 函数(1)15.2 函数(2)15.3一次 函数(1)15.3一次 函数(2)15.4一次函数的图象(1)15.4一次函数的图象(2)15.5一次函数的应用(1)15.5一次函数的应用(2)1
达成评价 课题课时目标达成评价评价任务 5.1 常量与变量 1.通过实例体验在一个过程中有些量固定不变,有些量不断地变化. 2.了解常量、变量的概念,体验在一个过程中常量与变量相对地存在. 3.会在简单的过程中辨别常量和变量.1.能够掌握常量和变量的概念. 2. 培养学生合作学习的能力. 活动一:情景导入,用生活的例子体会些量固定不变,有些量不断地变化. 活动二:概念归纳,辨别常量和变量. 活动三:探究新知,体验在一个过程中常量与变量相对地存在. 5.2 函数(1)了解函数的概念和三种表示方法; 2.了解函数值的概念,并会求一个数的函数值. 1.能掌握函数的有关概念. 2.能够体会用图象来表示函数关系涉及数形结合. 3.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值.活动一:复习导入,认识函数的定义. 活动二:新知探究,认识讲解函数的三种表示方法. 活动三:巩固练习,针对训练,学生自主完成,并请一名学生上台解题. 5.2 函数(2)会求一个函数的自变量的取值范围; 2.会求实际问题中函数的解析式.1.能够求函数的表达式. 2.能体会自变量的取值范围既要使表达式有意义,又要符合实际意义. 活动一:复习导入,回顾自变量的取值范围既要使表达式有意义. 活动二:合作探究,在实际问题中,函数的自变量取值范围往往是有限制的,在限制的范围内,函数才有实际意义. 活动三:巩固练习,针对训练,学生自主完成,并请学生回答问题. 5.3一次 函数(1)1.理解正比例函数、一次函数的概念. 2.会根据数量关系,求正比例函数、一次函数的解析式. 3.会求一次函数的值. 1.会求一次函数、正比例函数的概念和解析式. 2.培养学生自主探究能力和合作学习能力.活动一:复习导入,理解正比例函数、一次函数的概念. 活动二:探究新知,利用正比例函数解决实际问题,培养学生对数学的兴趣,感受数学的乐趣. 活动三:例题精讲,通过做对应的题目,来让学生更深刻理解本节知识. 5.3一次 函数(2)1.会用待定系数法求一次函数的解析式. 2.会通过已知自变量的值求相应一次函数的值,已知一次函数的值求相应自变量的值解决一些简单的实际问题. 1.能用待定系数法求一次函数的表达式. 2.会总结求待定系数法求一次函数表达式的步骤.活动一:温故知新,回顾已知自变量的值求相应一次函数的值. 活动二:探究新知,合作学习,通过做对应的题目,来让学生更深刻理解本节知识. 活动三:归纳步骤为“一设,二列,三解,四还原”. 活动四:巩固练习,针对训练,学生自主完成,并请一名学生上台解题.5.4一次函数的图象(1)掌握用描点法画函数图象; 2.掌握一次函数的图象(包括正比例函数)的图象及其画法. 1.掌握一次函数的图象(包括正比例函数)的图象. 2.理解一次函数的代数表达式与图象之间的一一对应关系.活动一:温故知新,回顾用描点法画图像方法. 活动二:探究新知,合作学习,用待定系数法求一次函数的表达式. 活动三:完成例题,针对训练,学生自主完成,并请一名学生上台解题.5.4一次函数的图象(2)1.掌握一次函数的性质,了解常数k,b的意义和作用. 2.会利用一次函数的图象和性质解决简单实际问题.1.能掌握一次函数的性质. 2.能对于两个不同函数图象共存于同一坐标系中的问题,常通过假设一图象正确,然后根据字母系数所表示的实际意义来判定另一图象是否正确来解决问题. 活动一:回顾旧知,为新课奠定基础. 活动二:探究新知,合作学习,k决定函数图象的增减性,b决定函数图象与y轴的交点位置. 活动三:完成例题,针对训练,学生自主完成,并请一名学生上台解题.5.5一次函数的应用(1)1.能利用一次函数的图象和性质解决实际问题. 2.会综合运用一次函数的表达式,函数图象以及结合方程(组)等其他数学模型,解决实际问题.1.能利用数据、画出图象取得函数表达式的基本方法和步骤. 2.会综合运用一次函数图象以及结合方程(组)等其他数学模型,解决实际问题活动一:回顾旧知,为新课奠定基础. 活动二:探究新知,合作学习,通过描点、连线、猜想、验证等步骤建立了最适合该情境的函数模型. 活动三:完成例题,针对训练,学生自主完成,让学生更深刻理解本节知识.5.5一次函数的应用(2)了解一次函数与二元一次方程组的关系; 2.能运用一次函数与二元一次方程组的关系解决方程组求解,不等式的求解等问题. 综合运用一次函数的表达式和图象等解决简单实际问题. 2.学会数形结合,利用一次函数图象解决实际问题.活动一:回顾旧知,理解图象交点和函数解的关系。 活动二:探究新知,合作学习,能运用一次函数与二元一次方程组的关系解决方程组求解,不等式的求解等问题. 活动三:完成例题,针对训练,学生自主完成,让学生更深刻理解本节知识.
21世纪教育网(www.21cnjy.com)(共28张PPT)
5.4一次函数的图象(1)
浙教版 八年级 上册
教材分析
使学生理解一次函数的代数表达式与图象之间的一一对应关系.掌握一次函数的图象(包括正比例函数)的图象及其画法.学会画一次函数图象一般选择一次函数图象与x轴、y轴的交点,过这两点画直线.
教学目标
教学目标:1.了解一次函数图象的意义.
2.经历一次函数图象的画图过程,能熟练画出一次函数的图象.
3.会求一次函数的图象与坐标轴的交点坐标.
教学重点:一次函数的图象.
教学难点:验证一次函数图象的完备性和纯粹性.
想一想:小明以80米/分的速度去上学,请问小明离家的距离 S(米)与小明出发的时间 t(分)之间的函数表达式是怎样的?
它是一次函数吗?它是正比例函数吗?
复习:函数有哪些表示方法
S=80t(t≥0);
是一次函数、
是正比例函数;
图象法、列表法、解析法.
你能用图象法来表示上题的函数表达式吗?
新知导入
情境引入
根据甲、乙两人赛跑中路程s与时间t的函数图象,你能获取哪些信息?
根据图象回答下列问题:
(1)这是一次几百米的赛跑?
(2)甲、乙两人中谁先到达终点?
(3)甲、乙两人所用时间各是多少?
从以上问题的解决中,发现函数的图象可以直观地解决一些问题 .
那么如何才能画出函数的图象呢?
0
50
100
12
12.5
6
6.25
t(s)
s(m)
甲
乙
25
3
新知讲解
合作学习
把一个函数的自变量x的值与函数y的对应值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做这个函数的图象.
函数的图象是我们研究和处理有关函数问题的重要工具.
分析:1.列表:分别选取若干对自变量与函数的对应值,列成下表.
2.定坐标:分别以表中的x作为横坐标,y作为纵坐标,得到一组点,
写出这些点(用坐标表示).
x …. -2 -1 0 1 2 ….
y=2x …. ….
-4
-2
0
2
4
(-2,-4)
(-1,-2)
(0,0)
(1,2)
(2,4)
……
活动一 以y=2x为例请同学们举例说明坐标与函数解析式的关系.
尝试画一次函数y=2x的图象.
1.选若干对自变量与函数的对应值,列成表格
x … -2 -1 0 1 2 …
y=2x … …
点( x, y) … …
2.画一个直角坐标系,并在直角坐标系中描出这些点
-4
(-2,-4)
-2
(-1,-2)
0
(0,0)
2
(1,2)
4
(2,4)
3.把所有这些点依此连接起来,得到y=2x的图象
(描点)
(连线)
(列表)
y=2x
描点法
1、观察图象,有特殊点吗?经过哪几个象限?
2、点(3,6)在图象上吗?
3、点(10,20)呢 ……
坐标满足一次函数y=2x的各点都在直线上。
活动二:画函数y=2x+1的图象。
1.填表:
x … -2 -1 0 1 2 …
y=2x+1 … …
坐标 … …
2.画一个直角坐标系,并在直角坐标系中画出上面的各个点( x, y);
-3 -1 1 3 5
(-2,-3) (-1,-1) (0,1) (1,3) (2,5)
3.观察坐标系中所画的点,有什么发现
满足函数关系式的任意一对(x,y)一定在函数图象上
问题1:直线有几个点组成?这些点的坐标满足函数解析式吗?
问题2:坐标满足函数解析式的点在这条直线上吗?
【思考】
y
x
O
y=2x
y=2x+1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
-1
-2
-3
-4
-5
-6
1
2
3
4
5
6
1
2
3
4
5
6
7
8
-7
-8
y= 2x-1
归纳:
(1)坐标满足函数解析式的点都在函数图象上。
(2)函数图象上的点的坐标都满足函数解析式。
想一想:怎样画一次函数的图象?
①列表
②描点
③连线
议一议
既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?
因为“两点确定一条直线 ”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.
提炼概念
由此可见,一次函数 y=kx+b(k、b为常数, k≠0 )可以用直角坐标系中的一条直线来表示, 从而这条直线就叫做一次函数 y=kx+b的图象.
所以,一次函数y=kx+b (k≠0)的图象也叫做直线 y=kx+b.
y
x
0
y=kx+b
两点确定一条直线:描两点
典例精讲
例1 在同一直角坐标系中画出下列函数的图象,并求出它们与坐标轴交点的坐标: y=3x, y=-3x+2.
解:对函数y=3x,
取x=0,得y=0,得到点(0,0);取x=1,得y=3,得到点(1,3)。过点(0,0),(1,3)画直线,就得到了函数y=3x的图象,其图象与坐标轴的交点是原点(0,0)。
x
y
0
1
2
3
3
1
2
-1
-2
-2
-1
y=3x
例1 在同一直角坐标系中画出下列函数的图象,并求出它们与坐标轴交点的坐标: y=3x, y=-3x+2.
对于函数y=-3x+2,
取x=0,得y=2,得到点(0,2);取x=1,得y=-1,得到点(1,-1)。
过点(0,2),(1,-1)画直线,就得到了函数y=-3x+2的图象,其图象与x轴的交点是( ,0),与y轴的交点是(0,2).
2
3
x
y
0
1
2
3
3
1
2
-1
-2
-2
-1
y=3x
y=-3x+2
归纳概念
想一想,你能直接利用函数的表达式求函数图象与坐标轴交点的坐标吗
一次函数y=kx+b(k,b都为常数,k≠0),
当x=0时,y=b , 函数图象与y轴的交点是(0,b)。
当y=0时,x= - ,函数图象与x轴的交点是( - ,0)。
b
k
b
k
正比例函数y=kx(k≠0)的图象必定经过原点(0,0)。
课堂练习
必做题
1.下面哪个点在函数y=4x的图象上( )
A.(-1,4) B.(0.5,2) C.(4,1) D.(0,4)
B
2. 函数y=2x-4与y轴的交点为________,与x轴交于_______.
(0,-4)
(2, 0)
选做题
3.在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.
由已知条件,得 2k+b=0
b=2 ,
k=-1
b=2
∴一次函数解析式为y=-x+2,
∵一次函数y=-x+2过C(m,3)点,
∴3=-m+2,
∴m=-1.
综合拓展题
4.在同一条道路上,甲每时走3km,出发0.15时后,乙以每时4.5km的速度追甲.设乙行走的时间为t时.
(1)写出甲、乙两人所走的路程s与时间t的关系式;
(2)在同一直角坐标系中画出它们的图象;
(3)求出两条直线的交点坐标,并说明它的实际意义.
解:(1)S甲=3(0.15+ t ),
即 S甲=0.45+3t; S乙=4.5t
(2)如右图所示
(3)两条直线的交点坐标为(0.3,1.35)
它的实际意义是
在乙在出发0.3时后追上乙,两人所走的路程为1.35km
0 0.2 0.4 0.6 0.8 1.0 t
s
3
2
S甲=0.45+3t
S乙=4.5t
作业布置
必做题
1.直线y=3x-2可由直线y=3x向___平移___个单位长度得到,
直线y=x+2可由直线y=x-1向___平移___个单位长度得到.
下
2
上
3
选做题
课堂练习
2.直线y=kx-4与两坐标轴所围成的三角形面积是4,则直线的解析式为_________________.
y=±2x-4
综合拓展题
4.如图所示,点P(x,y)是第一象限内一个动点,且在直线y=-2x+8上,直线与x轴交于点A.
(1)当点P的横坐标为3时,△APO的面积为多少
(2)设△APO的面积为S,用含x的式子表示S,并写出x的取值范围.
解:(1)令y=0,则-2x+8=0,解得x=4,所以OA=4,因为点P(x,y)是第一象限内一个动点,且在直线y=-2x+8上,所以当x=3时,y=(-2)×3+8=2,
所以SΔAPO= ×4×2=4.
(2)因为点P (x,-2x+8),
所以S△APO=OA×(-2x+8)
= ×4×(-2x+8)
=-4x+16(0课堂总结
这节课我们学习了:
1.函数的图象的概念
2.函数的图象的画法:
(1)列表 (2)描点(3)连线
3.函数图象与坐标轴的交点
令x=0,解出y的值即直线与y轴交点的纵坐标;
令y=0,解出x的值即直线与x轴交点的横坐标。
作业布置
教材课后配套作业题。
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
分课时教学设计
第6课时《5.4一次函数的图象(1)》教学设计
课型 新授课口 复习课口 试卷讲评课口 其他课口
教学内容分析 使学生理解一次函数的代数表达式与图象之间的一一对应关系.掌握一次函数的图象(包括正比例函数)的图象及其画法.学会画一次函数图象一般选择一次函数图象与x轴、y轴的交点,过这两点画直线.
学习者分析 亲自经历获取知识的过程,能提高对数学结论的认可程度.理解一次函数的代数表达式与图象之间的一一对应关系.掌握一次函数的图象(包括正比例函数)的图象及其画法.
教学目标 1.了解一次函数图象的意义. 2.经历一次函数图象的画图过程,能熟练画出一次函数的图象. 3.会求一次函数的图象与坐标轴的交点坐标.
教学重点 一次函数的图象.
教学难点 理解一次函数的代数表达式与图象之间的一一对应关系.验证图象学生不容易理解其意义,是本节教学的难点.
学习活动设计
教师活动学生活动环节一:情境引入教师活动1: 小明以80米/分的速度去上学,请问小明离家的距离 S(米)与小明出发的时间 t(分)之间的函数表达式是怎样的? 它是一次函数吗?它是正比例函数吗? 复习:函数有哪些表示方法 右边的图象表示的是甲、乙两人在一次赛跑中路程s与时间t的函数图象。你能获取哪些信息? (1)这是一次___100_____米的赛跑 (2)______甲____先到达终点? (3)乙在这次赛跑中的速度是___8m/s_______ 参照图象甲为例,当t=3时,s=25,这样把自变量t作为点的横坐标,把函数s作为点的纵坐标就得到点(3,25) 当t=6时,s=50,就得到点(6,50)……,所有这些点就组成了这个函数的图象。 把一个函数的自变量x与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做这个函数的图象。 学生活动1: 用具体的实例引入本课知识。 学生独立思考,举手回答问题,教师进行评价和讲析. 理解一次函数的代数表达式与图象之间的一一对应关系. 活动意图说明: 复习导入有利于衔接新旧知识,提高学习效率.通过从学生熟悉的事物引入本课知识引入新的知识有利于活跃课堂教学氛围,了解一次函数图象的意义.激发学生学习动机.使学生亲自经历获取知识的过程,能提高对数学结论的认可程度.环节二:新课讲解 合作探究 对一次函数 y=2x 与y=2x+1作如下研究: 1、分别选择若干对自变量与函数的对应值,完成下表 2、分别以表中的 x 值作点的横坐标 ,对应的 y 值作点的纵坐标 ,得到一组点,写出这组点的坐标。 y=2x (-2,-4) (-1,-2)... y=2x+1 (-2,-3) (0,1)... 3、画一个直角坐标系,并在直角坐标系中画出这组点。 以上画函数图象的方法叫做描点法。 描点法步骤:(1)列表;(2)描点;(3)连线; 4、观察所画的两组点,你发现了什么? 我们发现,如图,坐标满足一次函数y=2x的各点都在直线l1上;而坐标满足一次函数y=2x+1的各点,都在直线l2上,反过来,在直线l1或l2 上取一些点,这些点的坐标分别满足y=2x或y=2x+1上。 由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象. 学生活动2: 学生独立思考,结合已学知识举手回答问题,教师进行评价和讲析. 画一次函数图象一般选择一次函数图象与x轴、y轴的交点,过这两点画直线. 活动意图说明: 会在简单的过程中辨别常量和变量.让学生掌握画函数图象的描点法的步骤.使学生亲自经历获取知识的过程,能提高对数学结论的认可程度.环节三:例题讲解 例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点坐标: y=3x, y=-3x+2 解:对于函数y=3x, 取x=0,得y=0,得到点(0,0); 取x=1,得y=3,得到点(1,3) 过点(0,0),(1,3)画直线,就得到了函数y=3x的图象,其图象与坐标轴的交点是原点(0,0) 对于函数y=-3x+2, 取x=0,得y=2,得到点(0,2); 取x=1,得y=-1,得到点(1,-1) 过点(0,2),(1,-1)画直线,就得到了函数y=-3x+2的图象,其图象与x轴的交点是( ,0),与y轴交点是(0,2) 想一想 你能直接利用函数的表达式求函数图像与坐标轴交点的坐标吗? 令x=0,解出y的值即直线与y轴交点的纵坐标; 令y=0,解出x的值即直线与x轴交点的横坐标。 正比例函数一般过:(0,0)(1,k)画直线 一次函数一般过:(0,b)( - ,0)画直线。 学生活动3: 学生自主答题,教师请一名学生回答问题,完成后教师进行评价及讲解. 学生认真思考,合作交流,举手回答问题,教师进行评价和讲析. 掌握一次函数的图象(包括正比例函数)的图象及其画法. 活动意图说明: 让学生通过具体例题的教学理解和巩固数学基础知识,把数学理论与实践相结合,掌握数学基础知识理论的用途和方法,从而达到提高分析问题解决问题的能力的目标.通过自主探究增强巩固知识并提高知识认同度.
板书设计
课堂练习 【知识技能类作业】 必做题: 1.下面哪个点在函数y=4x的图象上( ) A.(-1,4) B.(0.5,2) C.(4,1) D.(0,4) B 2. 函数y=2x-4与y轴的交点为________,与x轴交于_______. (0,-4)(2, 0) 选做题: 3.在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值. 由已知条件,得 2k+b=0 b=2
解得 k=-1 b=2
∴一次函数解析式为y=-x+2,
∵一次函数y=-x+2过C(m,3)点,
∴3=-m+2,
∴m=-1. 【综合拓展类作业】 4.在同一条道路上,甲每时走3km,出发0.15时后,乙以每时4.5km的速度追甲.设乙行走的时间为t时. (1)写出甲、乙两人所走的路程s与时间t的关系式; (2)在同一直角坐标系中画出它们的图象; (3)求出两条直线的交点坐标,并说明它的实际意义. 解:(1)S甲=3(0.15+ t ), 即 S甲=0.45+3t; S乙=4.5t (2)如右图所示 (3)两条直线的交点坐标为(0.3,1.35) 它的实际意义是 在乙在出发0.3时后追上乙,两人所走的路程为1.35km
作业布置 【知识技能类作业】 必做题: 1.直线y=3x-2可由直线y=3x向___平移___个单位长度得到, 直线y=x+2可由直线y=x-1向___平移___个单位长度得到. 下2 上3 选做题: 2.直线y=kx-4与两坐标轴所围成的三角形面积是4,则直线的解析式为_________________. y=±2x-4 【综合拓展类作业】 3.如图所示,点P(x,y)是第一象限内一个动点,且在直线y=-2x+8上,直线与x轴交于点A. (1)当点P的横坐标为3时,△APO的面积为多少 (2)设△APO的面积为S,用含x的式子表示S,并写出x的取值范围. 解:(1)令y=0,则-2x+8=0,解得x=4,所以OA=4,因为点P(x,y)是第一象限内一个动点,且在直线y=-2x+8上,所以当x=3时,y=(-2)×3+8=2, 所以SΔAPO= 1/2 ×4×2=4. (2)因为点P (x,-2x+8), 所以S△APO=OA×(-2x+8) = 1/2 ×4×(-2x+8) =-4x+16(0教学反思 这节课我们学习了: 1.函数的图象的概念 2.函数的图象的画法: (1)列表 (2)描点(3)连线 3.函数图象与坐标轴的交点 令x=0,解出y的值即直线与y轴交点的纵坐标; 令y=0,解出x的值即直线与x轴交点的横坐标。
21世纪教育网(www.21cnjy.com)