2017-2018学年数学浙教版八年级下册5.1.2 矩形的判定 同步练习

文档属性

名称 2017-2018学年数学浙教版八年级下册5.1.2 矩形的判定 同步练习
格式 zip
文件大小 172.2KB
资源类型 试卷
版本资源
科目 数学
更新时间 2018-05-16 11:25:46

文档简介

2017-2018学年数学浙教版八年级下册5.1.2 矩形的判定 同步练习
一、选择题
1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是(  )
A.测量对角线是否相互平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量其中三个角是否都为直角
【答案】D
【知识点】矩形的判定
【解析】【解答】解:A、对角线是否相互平分,能判定平行四边形;
B、两组对边是否分别相等,能判定平行四边形;
C、一组对角是否都为直角,不能判定形状;
D、其中四边形中三个角都为直角,能判定矩形.
故选D.
【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
2.如图,要使 ABCD成为矩形,需添加的条件是(  )
A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD
【答案】B
【知识点】矩形的判定
【解析】【解答】解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;
B、∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AO=BO,
∴OA=OC=OB=OD,
即AC=BD,
∴平行四边形ABCD是矩形,故本选项正确;
C、∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠2=∠ACB,
∵∠1=∠2,
∴∠1=∠ACB,
∴AB=BC,
∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
D、∵四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
故选B.
【分析】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.
3.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是(  )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
【答案】C
【知识点】矩形的判定
【解析】【解答】解:∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形,
∴A正确;
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,
∴B正确;
∵∠B+∠C=180°,
∴AB∥DC,
∵∠A=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴四边形ABCD是菱形,
∴C不正确;
∵∠A=∠B=90°,
∴∠A+∠B=180°,
∴AD∥BC,如图所示:
在Rt△ABC和Rt△BAD中,

∴Rt△ABC≌Rt△BAD(HL),
∴BC=AD,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,
∴D正确;
故选:C.
【分析】由AB=CD,AD=BC,得出四边形ABCD是平行四边形,再由对角线相等即可得出A正确;
由AO=CO,BO=DO,得出四边形ABCD是平行四边形,由∠A=90°即可得出B正确;
由∠B+∠C=180°,得出AB∥DC,再证出AD∥BC,得出四边形ABCD是平行四边形,由对角线互相垂直得出四边形ABCD是菱形,C不正确;
由∠A+∠B=180°,得出AD∥BC,由HL证明Rt△ABC≌Rt△BAD,得出BC=AD,证出四边形ABCD是平行四边形,由∠A=90°即可得出D正确.
4.下列判断正确的是(  )
A.有一个角是直角的四边形是矩形
B.两条对角线互相平分的四边形是矩形
C.有三个角是直角的四边形是矩形
D.两条对角线互相垂直的四边形是矩形
【答案】C
【知识点】矩形的判定与性质
【解析】【解答】A、有一个角是直角的平行四边形是矩形;故A不符合题意;
B、两条对角线互相平分且相等的四边形是矩形;故B不符合题意;
C、有三个角是直角的四边形是矩形;故C符合题意;
D、两条对角线互相垂直的平行四边形是菱形;故D不符合题意.
故答案为:C.
【分析】根据矩形的定义可判断,在空间中,有三个角是直角的四边形是矩形.
5.如果依次连接四边形各边的中点所得四边形是矩形,那么原来的四边形的两条对角线(  )
A.相等 B.互相垂直
C.互相平分 D.互相平分且相等
【答案】B
【知识点】矩形的判定
【解析】【解答】顺次连接对角线互相垂直的四边形的各边中点所得的图形是矩形.
如图:
∵E、F、G、H分别为各边中点,
∴EF∥GH∥DB,EF=GH= DB,
EH=FG= AC,EH∥FG∥AC,
∵DB⊥AC,
∴EF⊥EH
∴四边形EFGH是矩形.
故答案为:B.
【分析】由于顺次连接四边形各边中点得到的四边形是平行四边形,再由矩形的判定可知,依次连接对角线互相垂直的四边形各边的中点所得四边形是矩形.
6.如图,有两张形状、大小完全相同的直角三角形纸片(同一个直角三角形的两条直角边不相等),把两个三角形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形,其中,形状不同的四边形有(  )
A.3种 B.4种 C.5种 D.6种
【答案】B
【知识点】矩形的判定与性质
【解析】【解答】如图,①②③,
; ;
共有4种情况,两种平行四边形,矩形和一般的四边形;
故答案为:B.
【分析】根据题意将所有情况列出即可.
二、填空题
7.(2016九下·十堰期末)木工做一个长方形桌面,量得桌面的长为45cm,宽为28cm,对角线为53cm,这个桌面   .(填“合格”或“不合格”).
【答案】合格
【知识点】勾股定理的逆定理;矩形的判定
【解析】【解答】解:∵长都为45cm,宽都为28cm,
∴此四边形是平行四边形,
∵桌面的长为45cm,宽为28cm,对角线为53cm,且452+282=532,
∴此四边形的一个角为90°,
∴此四边形是矩形.
∴这个桌面合格.
故答案为:合格.
【分析】由桌面的长为45cm,宽为28cm,对角线为53cm,利用勾股定理的逆定理即可判定90°的角,继而求得答案.
8.(2017八下·启东期中)如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理   .
【答案】对角线相等的平行四边形是矩形,矩形的四个角都是直角
【知识点】矩形的判定
【解析】【解答】因为平行四边形ABCD的对角线相等,所以四边形ABCD是矩形,而矩形的四个角都是直角。
故答案是:对角线相等的平行四边形是矩形,矩形的四个角都是直角
【分析】根据已知可知平行四边形ABCD的对角线相等,所以四边形ABCD是矩形,而矩形的四个角都是直角。即可得出答案。
9.如图,平行四边形ABCD中,∠DAB=70°,将平行四边形ABCD变化为一个矩形(图中的虚线部分),在此过程中,分析每条边的运动.AB:   ;AD:   ;BC:   ;CD:   .
【答案】不动;绕点A沿逆时针旋转20°;绕点B沿逆时针旋转20°;平移
【知识点】矩形的判定
【解析】【解答】ABCD是平行四边形,两组对边分别平行,只要保证一个角为90°,则四边形ABCD即为矩形.
【分析】熟练掌握矩形的判定.平行四边形只要保证一个角为直角,则四边形为矩形.
10.如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是   .
【答案】矩形
【知识点】平行线的性质;矩形的判定
【解析】【解答】证明:∵MN∥PQ,
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC= ∠MAC、∠DCA= ∠ACQ,
又∵∠MAC=∠ACQ,
∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA= ∠ACP、∠DAC= ∠NAC,
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
又∵AB∥CD,
∴四边形ABCD平行四边形,
∵∠BAC= ∠MAC,∠ACB= ∠ACP,
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACP=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形,
故答案为:矩形.
【分析】首先推出∠BAC=∠DCA,继而推出AB∥CD;推出∠BCA=∠DAC,进而推出AD∥CB,因此四边形ABCD平行四边形,再证明∠ABC=90°,可得平行四边形ABCD是矩形.
三、解答题
11.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作 ABDE,连接AD,EC.求证:四边形ADCE是矩形.
【答案】证明:∵AB=AC,D为BC边的中点,
∴AD⊥BC,BD=CD,
∴∠ADC=90°,
∵四边形ABDE是平行四边形,
∴AE∥BD,AE=BD,
∴AE∥CD,AE=CD,
∴四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴四边形ADCE是矩形
【知识点】矩形的判定
【解析】【分析】根据平行四边形的性质、利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.
12.王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在平行四边形ABCD中, ,求证:平行四边形ABCD是 .
(1)在方框中填空,以补全已知和求证;
(2)按王晓的想法写出证明过程;
证明:
【答案】(1)AC=BD;矩形
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=BC,
在△ADC和△BCD中,
∵AC=BD,AD=BC,CD=DC
∴△ADC≌△BCD,
∴∠ADC=∠BCD.
又∵AD∥CB,
∴∠ADC+∠BCD=180°,
∴∠ADC=∠BCD=90°.
∴平行四边形ABCD是矩形
【知识点】矩形的判定
【解析】【分析】在△ABD和△CDB中, ∵AC=BD,AD=BC,CD=DC,∴△ADC≌△BCD.∴∠ADC=∠BCD,∴AB//CD,AD//CB, ∴四边形ABCD是平行四边形∠ADC+∠BCD=180°,∴∠ADC=∠BCD=90°.一个角是直角的平行四边形是矩形.
13.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?
【答案】(1)解:四边形ADEF是平行四边形.
理由:∵△ABD,△EBC都是等边三角形.
∴AD=BD=AB,BC=BE=EC
∠DBA=∠EBC=60°
∴∠DBE+∠EBA=∠ABC+∠EBA.
∴∠DBE=∠ABC.
在△DBE和△ABC中
∵BD=BA
∠DBE=∠ABC
BE=BC,
∴△DBE≌△ABC.
∴DE=AC.
又∵△ACF是等边三角形,
∴AC=AF.
∴DE=AF.
同理可证:AD=EF,
∴四边形ADEF平行四边形
(2)解:∵四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.
∴∠BAC=150°时,四边形ADEF是矩形
(3)解:当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.
理由如下:
若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.
此时,点A、D、E、F四点共线,
∴以A、D、E、F为顶点的四边形不存在
【知识点】矩形的判定
【解析】【分析】可先证明△DBE≌△ABC,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;若四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,A,D,E,F为顶点的四边形就不存在.
1 / 12017-2018学年数学浙教版八年级下册5.1.2 矩形的判定 同步练习
一、选择题
1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是(  )
A.测量对角线是否相互平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量其中三个角是否都为直角
2.如图,要使 ABCD成为矩形,需添加的条件是(  )
A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD
3.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是(  )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
4.下列判断正确的是(  )
A.有一个角是直角的四边形是矩形
B.两条对角线互相平分的四边形是矩形
C.有三个角是直角的四边形是矩形
D.两条对角线互相垂直的四边形是矩形
5.如果依次连接四边形各边的中点所得四边形是矩形,那么原来的四边形的两条对角线(  )
A.相等 B.互相垂直
C.互相平分 D.互相平分且相等
6.如图,有两张形状、大小完全相同的直角三角形纸片(同一个直角三角形的两条直角边不相等),把两个三角形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形,其中,形状不同的四边形有(  )
A.3种 B.4种 C.5种 D.6种
二、填空题
7.(2016九下·十堰期末)木工做一个长方形桌面,量得桌面的长为45cm,宽为28cm,对角线为53cm,这个桌面   .(填“合格”或“不合格”).
8.(2017八下·启东期中)如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理   .
9.如图,平行四边形ABCD中,∠DAB=70°,将平行四边形ABCD变化为一个矩形(图中的虚线部分),在此过程中,分析每条边的运动.AB:   ;AD:   ;BC:   ;CD:   .
10.如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是   .
三、解答题
11.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作 ABDE,连接AD,EC.求证:四边形ADCE是矩形.
12.王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在平行四边形ABCD中, ,求证:平行四边形ABCD是 .
(1)在方框中填空,以补全已知和求证;
(2)按王晓的想法写出证明过程;
证明:
13.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?
答案解析部分
1.【答案】D
【知识点】矩形的判定
【解析】【解答】解:A、对角线是否相互平分,能判定平行四边形;
B、两组对边是否分别相等,能判定平行四边形;
C、一组对角是否都为直角,不能判定形状;
D、其中四边形中三个角都为直角,能判定矩形.
故选D.
【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
2.【答案】B
【知识点】矩形的判定
【解析】【解答】解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;
B、∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AO=BO,
∴OA=OC=OB=OD,
即AC=BD,
∴平行四边形ABCD是矩形,故本选项正确;
C、∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠2=∠ACB,
∵∠1=∠2,
∴∠1=∠ACB,
∴AB=BC,
∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
D、∵四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
故选B.
【分析】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.
3.【答案】C
【知识点】矩形的判定
【解析】【解答】解:∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形,
∴A正确;
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,
∴B正确;
∵∠B+∠C=180°,
∴AB∥DC,
∵∠A=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴四边形ABCD是菱形,
∴C不正确;
∵∠A=∠B=90°,
∴∠A+∠B=180°,
∴AD∥BC,如图所示:
在Rt△ABC和Rt△BAD中,

∴Rt△ABC≌Rt△BAD(HL),
∴BC=AD,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,
∴D正确;
故选:C.
【分析】由AB=CD,AD=BC,得出四边形ABCD是平行四边形,再由对角线相等即可得出A正确;
由AO=CO,BO=DO,得出四边形ABCD是平行四边形,由∠A=90°即可得出B正确;
由∠B+∠C=180°,得出AB∥DC,再证出AD∥BC,得出四边形ABCD是平行四边形,由对角线互相垂直得出四边形ABCD是菱形,C不正确;
由∠A+∠B=180°,得出AD∥BC,由HL证明Rt△ABC≌Rt△BAD,得出BC=AD,证出四边形ABCD是平行四边形,由∠A=90°即可得出D正确.
4.【答案】C
【知识点】矩形的判定与性质
【解析】【解答】A、有一个角是直角的平行四边形是矩形;故A不符合题意;
B、两条对角线互相平分且相等的四边形是矩形;故B不符合题意;
C、有三个角是直角的四边形是矩形;故C符合题意;
D、两条对角线互相垂直的平行四边形是菱形;故D不符合题意.
故答案为:C.
【分析】根据矩形的定义可判断,在空间中,有三个角是直角的四边形是矩形.
5.【答案】B
【知识点】矩形的判定
【解析】【解答】顺次连接对角线互相垂直的四边形的各边中点所得的图形是矩形.
如图:
∵E、F、G、H分别为各边中点,
∴EF∥GH∥DB,EF=GH= DB,
EH=FG= AC,EH∥FG∥AC,
∵DB⊥AC,
∴EF⊥EH
∴四边形EFGH是矩形.
故答案为:B.
【分析】由于顺次连接四边形各边中点得到的四边形是平行四边形,再由矩形的判定可知,依次连接对角线互相垂直的四边形各边的中点所得四边形是矩形.
6.【答案】B
【知识点】矩形的判定与性质
【解析】【解答】如图,①②③,
; ;
共有4种情况,两种平行四边形,矩形和一般的四边形;
故答案为:B.
【分析】根据题意将所有情况列出即可.
7.【答案】合格
【知识点】勾股定理的逆定理;矩形的判定
【解析】【解答】解:∵长都为45cm,宽都为28cm,
∴此四边形是平行四边形,
∵桌面的长为45cm,宽为28cm,对角线为53cm,且452+282=532,
∴此四边形的一个角为90°,
∴此四边形是矩形.
∴这个桌面合格.
故答案为:合格.
【分析】由桌面的长为45cm,宽为28cm,对角线为53cm,利用勾股定理的逆定理即可判定90°的角,继而求得答案.
8.【答案】对角线相等的平行四边形是矩形,矩形的四个角都是直角
【知识点】矩形的判定
【解析】【解答】因为平行四边形ABCD的对角线相等,所以四边形ABCD是矩形,而矩形的四个角都是直角。
故答案是:对角线相等的平行四边形是矩形,矩形的四个角都是直角
【分析】根据已知可知平行四边形ABCD的对角线相等,所以四边形ABCD是矩形,而矩形的四个角都是直角。即可得出答案。
9.【答案】不动;绕点A沿逆时针旋转20°;绕点B沿逆时针旋转20°;平移
【知识点】矩形的判定
【解析】【解答】ABCD是平行四边形,两组对边分别平行,只要保证一个角为90°,则四边形ABCD即为矩形.
【分析】熟练掌握矩形的判定.平行四边形只要保证一个角为直角,则四边形为矩形.
10.【答案】矩形
【知识点】平行线的性质;矩形的判定
【解析】【解答】证明:∵MN∥PQ,
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC= ∠MAC、∠DCA= ∠ACQ,
又∵∠MAC=∠ACQ,
∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA= ∠ACP、∠DAC= ∠NAC,
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
又∵AB∥CD,
∴四边形ABCD平行四边形,
∵∠BAC= ∠MAC,∠ACB= ∠ACP,
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACP=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形,
故答案为:矩形.
【分析】首先推出∠BAC=∠DCA,继而推出AB∥CD;推出∠BCA=∠DAC,进而推出AD∥CB,因此四边形ABCD平行四边形,再证明∠ABC=90°,可得平行四边形ABCD是矩形.
11.【答案】证明:∵AB=AC,D为BC边的中点,
∴AD⊥BC,BD=CD,
∴∠ADC=90°,
∵四边形ABDE是平行四边形,
∴AE∥BD,AE=BD,
∴AE∥CD,AE=CD,
∴四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴四边形ADCE是矩形
【知识点】矩形的判定
【解析】【分析】根据平行四边形的性质、利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.
12.【答案】(1)AC=BD;矩形
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=BC,
在△ADC和△BCD中,
∵AC=BD,AD=BC,CD=DC
∴△ADC≌△BCD,
∴∠ADC=∠BCD.
又∵AD∥CB,
∴∠ADC+∠BCD=180°,
∴∠ADC=∠BCD=90°.
∴平行四边形ABCD是矩形
【知识点】矩形的判定
【解析】【分析】在△ABD和△CDB中, ∵AC=BD,AD=BC,CD=DC,∴△ADC≌△BCD.∴∠ADC=∠BCD,∴AB//CD,AD//CB, ∴四边形ABCD是平行四边形∠ADC+∠BCD=180°,∴∠ADC=∠BCD=90°.一个角是直角的平行四边形是矩形.
13.【答案】(1)解:四边形ADEF是平行四边形.
理由:∵△ABD,△EBC都是等边三角形.
∴AD=BD=AB,BC=BE=EC
∠DBA=∠EBC=60°
∴∠DBE+∠EBA=∠ABC+∠EBA.
∴∠DBE=∠ABC.
在△DBE和△ABC中
∵BD=BA
∠DBE=∠ABC
BE=BC,
∴△DBE≌△ABC.
∴DE=AC.
又∵△ACF是等边三角形,
∴AC=AF.
∴DE=AF.
同理可证:AD=EF,
∴四边形ADEF平行四边形
(2)解:∵四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.
∴∠BAC=150°时,四边形ADEF是矩形
(3)解:当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.
理由如下:
若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.
此时,点A、D、E、F四点共线,
∴以A、D、E、F为顶点的四边形不存在
【知识点】矩形的判定
【解析】【分析】可先证明△DBE≌△ABC,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;若四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,A,D,E,F为顶点的四边形就不存在.
1 / 1