【四清导航】2015(秋)九年级数学(浙教版)上册(预习+练习)课件:2-3 用频率估计概率(2份)

文档属性

名称 【四清导航】2015(秋)九年级数学(浙教版)上册(预习+练习)课件:2-3 用频率估计概率(2份)
格式 zip
文件大小 1.0MB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2015-05-15 15:24:59

文档简介

课件17张PPT。2.3 用频率估计概率1.(5分)关于频率与概率的关系,下列说法正确的是 ( )
A.频率等于概率
B.当试验次数很大时,频率稳定在概率附近
C.当试验次数很大时,概率稳定在频率附近
D.试验得到的频率与概率不可能相等B2.(5分)绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是 ( )
A.0.96 B.0.95 C.0.94 D.0.90BD 4.(5分)甲、乙两名同学在一次用频率估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是 ( )
A.掷一枚正六面体的骰子,出现1点的概率
B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率B5.(5分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……如此大量的摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论:①若进行大量的摸球实验,摸出白球的频率应稳定于30%;②若从布袋中随机摸出一球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是 ( )
A.①②③ B.①② C.①③ D.②③BA D0.5 9.(5分)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有____条鱼.
10.(5分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒子中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是____.12001011.(14分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中再继续.
活动结果:摸球试验活动一共做了50次,统计结果如下表:②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?
小红的说法不正确.∵利用频率估计概率试验次数必须比较多,重复试验,频率才慢慢接近概率,而她们的试验次数太少,没有代表性,∴小红的说法不正确.(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或树状图的方法加以说明,并求出最大概率.
列表如下:13.(18分)在一个不透明的口袋里装有仅颜色不同的黑、白两种球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:0.6 (4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题终于有办法解决了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.①先从不透明的口袋里摸出a个白球,都涂上颜色(如黑色),然后放回口袋里,搅拌均匀;②将搅匀后的球从中随机摸出一个球记下颜色,再把它放回袋中,不断大量重复n次,记录摸出黑球的频数为b;③根据用频数估计概率的方法可得出白球数为.课件14张PPT。2.3 用频率估计概率复习回顾:1、如何估计一位篮球运动员的罚球命中率?2、抛一枚均匀的硬币,“正面朝上“的概率是多少?
它表示的含义是什么? 我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,你获得什么启示?实验次数越多,频率越接近概率初步感知 让如图的转盘自由转动一次,停止转动后,指针落在红色区域的概率是1/3,以下是实验的方法:0.30.40.360.35(2)填写下表:(1)一个班级的同学分10组,每组都配一个如图的转盘381114合作探索(3)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:0.31250.36250.3250.34380.325255878110130合作探索(4)根据上面的表格,在下图中画出频率分布折线图(5)议一议:频率与概率有什么区别和联系? 随着重复实验次数的不断增加,频率的变化趋势如何?400320240160800 通过大量重复的实验,用一个事件发生的频率来估计这一事件发生的概率.频率实验次数0.340.68合作探索议一议: 从上面的实验可以看出,当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近 瑞士数学家雅各布.伯努利(1654-1705)最早阐明了可以由频率估计概率即:   在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率 频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何? 大量的实验表明:当重复实验的次数大量增加时,事件发生的频数就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率 因此,我们一般把实验次数最多的频率近似作为该事件的概率共同归纳做一做1.某运动员投篮5次,投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2、抽检1000件衬衣,其中不合格的衬衣有2件,由此估计抽1件衬衣合格的概率是多少?P=499/500P=1/10000000不能,因为只有当重复实验次数大量增加时,事件发生的频率才稳定在概率附近。3、1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:(1)计算表中各个频数.
(2)估计该麦种的发芽概率0.80.950.950.950.9510.9520.940.920.9(3)如果播种500粒该种麦种,种子发芽后的成秧率为90%,问可得到多少棵秧苗?450(4)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg?解:设需麦种x kg,解得:x≈531.
答:播种3公顷该种小麦,估计约需531kg麦种.课堂小结: 频率不等于概率,但通过大量的重复实验,事件发生的频率值将逐渐稳定在相应的概率附近,此时的频率值可用于估计这一事件发生的概率 概率只表示事件发生的可能性的大小,不能说明某种肯定的结果。 概率是理论性规律的东西,频率是实践性的东西,理论应该联系实际,因此我们可以通过大量重复的实验,用一个事件发生的频率来估计这一事件发生的概率拓展提高 某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑。希望中学要从甲乙两种品牌电脑中各选购一种型号的电脑
(1)写出所有的选购方案;
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,恰好用了10万元人民币,其中甲品牌电脑为A型电脑,求购买的A型电脑有几台?