【四清导航】2015(秋)九年级数学(浙教版)上册(预习+练习)课件:4-3 相似三角形(2份)

文档属性

名称 【四清导航】2015(秋)九年级数学(浙教版)上册(预习+练习)课件:4-3 相似三角形(2份)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2015-05-16 08:36:08

文档简介

课件15张PPT。4.3 相似三角形1.(3分)下列命题中,是真命题的为 ( )
A.锐角三角形都相似 B.直角三角形都相似
C.等腰三角形都相似 D.等边三角形都相似
2.(3分)已知△ABC∽△A′B′C′,且相似比为2,则 ( )
A.∠A是∠A′的2倍 B.∠A′是∠A的2倍
C.AB是A′B′的2倍 D.A′B′是AB的2倍DCD D C6.(6分)找出如图所示相似三角形的对应边和对应角.
①对应边: ,
对应角: ;
②对应边: ,
对应角: ;
③对应边: ,
对应角: .AD与AB,AE与AC,DE与BC∠A与∠A,∠ADE与∠B,∠AED与∠CAO与BO,CO与DO,AC与BD∠A与∠B,∠C与∠D,∠AOC与∠BODDE与DG,DF与DH,EF与GH∠E与∠G,∠EDF与∠GDH,∠F与∠H3 12.(8分)如图所示,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°.
(1)求∠AED和∠ADE的大小;
(2)求DE的长.13.(8分)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,E为AC上一点,点E不与点C重合,若△AEP∽△ABC,且AB=10,AC=8,设AP的长为x,PE的长为y,求y与x之间的函数表达式.15.(10分)如图,D是AB的中点,△ABC∽△ACD,且AD=2,∠ADC=65°.
(1)写出△ABC与△ACD的对应边成比例的比例式;
(2)求AC的值及∠ACB的度数.16.(12分)一个钢筋三脚架长分别是20 cm,50 cm,60 cm.现要再做一个与其相似的钢筋三脚架,而只有长为30 cm和50 cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料),作为其余两边,则不同的截法有多少种?请说明理由.课件15张PPT。4.3 相似三角形问题1:这两个三角形是否为相似形?观察左图中两幅图形的形状和大小有什么关系?相似形定义:我们把形状相同的两个图形称为相似形。表示为:
△ABC∽△ A'B'C' 在写两个三角形相似时应把表示对应顶点的字母写在对应的位置上。 注意读作:
△ABC相似于△ A'B'C' △ABC与△ A'B'C'相似用符号语言表示:∴ △ABC∽△A'B'C'(相似三角形的定义可以作为三角形相似的一种判定方法。)ABCDEF2cm3cm那么△ABC与△DEF对应边的比=已知△ABC∽△DEF,AC=2cm,DF=3cm我们将相似三角形对应边的比称之为相似比。(用字母k表示)2/3?问题2△ABC与△A'B'C'的
相似比k1△A'B'C'与△ABC的相似比k2△ABC∽△A'B'C'问题三角形的前后次序不同,所得相似比不同。∠ADE=∠B,∠AED=∠C, 又∵ ∠A= ∠A∴ △ABC∽△ADE已知BC∥DEDE△ABC与△ADE是否相似?若D、E点分别在两边的延长线上呢?结论是否成立?问题3∵ BC∥DE∴平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。DE用数学符号表示:∵ DE∥BC∴ ΔADE∽ΔABC 三角形的中位线截得的三角形与原三角形是否相似?相似比是多少?
问题 已知:如图,AB∥EF ∥CD,则△AOB与
_______和_______都相似。3图中共有____对相似三角形。 △EOF∽△COD△FOE△DOC AB∥EF △AOB∽ △FOE AB∥CDEF∥CD△AOB ∽△DOC问题ABCDEF图中有几个三角形相似思考题DF//BCDE//AC EF//AB已知:为什么?相似三角形的传递性:如果△ABC∽△A1B1C1 ,
而△A1B1C1 ∽△A2B2C2
那么△ABC∽△A2B2C2 。如果△ABC∽△A1B1C1
而△A1B1C1 ∽△A2B2C2
那么△ABC与△A2B2C2
是否相似?问题 如果一个三角形的三边长分别为5、12和13,与其相似的三角形的最长边为39,你知道这个三角形的其它情况吗? 1.全等三角形是不是相似三角形?说明你的理由。 2.(1)所有的等腰三角形是不是相似三角形?  (2)所有的直角三角形是不是相似三角形?  (3)所有的正三角形是不是相似三角形?