专题2.6 阿氏圆模型(最值模型) 2023-2024学年九年级下册数学同步课堂 培优题库(浙教版)(原卷版+解析卷)

文档属性

名称 专题2.6 阿氏圆模型(最值模型) 2023-2024学年九年级下册数学同步课堂 培优题库(浙教版)(原卷版+解析卷)
格式 zip
文件大小 8.0MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2023-12-20 12:47:09

文档简介

中小学教育资源及组卷应用平台
专题2.6 阿氏圆模型(最值模型)
模块1:模型简介及知识储备
【模型背景】已知平面上两点A、B,则所有满足 PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
【模型解读】如图 1 所示,⊙O的半径为 r,点 A、B都在⊙O 外,P为⊙O上一动点,已知r=k·OB, 连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?
如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为 “PA+PC”的最小值,
其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。如图3所示:
注意区分胡不归模型和阿氏圆模型:
在前面的“胡不归”问题中,我们见识了“k·PA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.
【最值原理】两点之间线段最短及垂线段最短解题。
模块2:核心模型点与典例
例1.(2023·山西·九年级专题练习)如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是___________.
【答案】
【分析】作BH⊥AC于H,取BC的中点D,连接PD,如图,根据切线的性质得BH为⊙B的半径,再根据等腰直角三角形的性质得到BHAC,接着证明△BPD∽△BCP得到PDPC,所以PAPC=PA+PD,而PA+PD≥AD(当且仅当A、P、D共线时取等号),从而计算出AD得到PA的最小值.
【详解】解:作BH⊥AC于H,取BC的中点D,连接PD,如图,
∵AC为切线,∴BH为⊙B的半径,∵∠ABC=90°,AB=CB=2,
∴ACBA=2,∴BHAC,∴BP,
∵,,而∠PBD=∠CBP,∴△BPD∽△BCP,
∴,∴PDPC,∴PAPC=PA+PD,
而PA+PD≥AD(当且仅当A、P、D共线时取等号),
而AD,∴PA+PD的最小值为,即PA的最小值为.故答案为:.
【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PDPC.也考查了等腰直角三角形的性质.
例2.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.
【答案】5
【详解】分析: 由PD PC=PD PG≤DG,当点P在DG的延长线上时,PD PC的值最大,最大值为DG=5.
详解: 在BC上取一点G,使得BG=1,如图,
∵,,∴,
∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,
当点P在DG的延长线上时,PD PC的值最大,最大值为DG==5.故答案为5
点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
例3.(2022·浙江·舟山九年级期末)如图,矩形中,,以B为圆心,以为半径画圆交边于点E,点P是弧上的一个动点,连结,则的最小值为( )
A. B. C. D.
【答案】C
【分析】连接BP,取BE的中点G,连接PG,通过两组对应边成比例且夹角相等,证明,得到,则,当P、D、G三点共线时,取最小值,求出DG的长得到最小值.
【详解】解:如图,连接BP,取BE的中点G,连接PG,
∵,,∴,
∵G是BE的中点,∴,∴,
∵,∴,∴,∴,
则,当P、D、G三点共线时,取最小值,即DG长,
.故选:C.
【点睛】本题考查矩形和圆的基本性质,相似三角形的性质和判定,解题的关键是构造相似三角形将转换成,再根据三点共线求出最小值.
例4.(2022·江苏·无锡市九年级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 ___.
【答案】
【分析】如图,在y轴上取一点C(0,9),连接PC, 根据,∠AOP是公共角,可得△AOP∽△POC,得PC=3PA,当B,C,P三点共线时,3PA+PB的值最小为BC,利用勾股定理求出BC的长即可得答案.
【详解】如图,在y轴上取一点C(0,9),连接PC,
∵⊙O半径为3,点A(0,1),点B(2,0),∴OP=3,OA=1,OB=2,OC=9,
∵,∠AOP是公共角,∴△AOP∽△POC,∴PC=3PA,
∴3PA+PB=PC+PB,∴当B,C,P三点共线时,3PA+PB最小值为BC,
∴BC===,∴3PA+PB的最小值为.故答案为:
【点睛】本题主要考查相似三角形的判定与性质及最小值问题,正确理解C、P、B三点在同一条直线上时3PA+PB有最小值,熟练掌握相似三角形的判定定理是解题关键.
例5.(2023·浙江·一模)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值
(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连结CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠   
△   ∽△   
∴ ∴PD=BP ∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为   .
(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则AP+PC的最小值为   .(请在图3中添加相应的辅助线)
(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
【答案】(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.
【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;
(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=4,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;
(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.
【详解】解:(1)如图1,
连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,
∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,
∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;
∴DF=CF﹣CD=3﹣1=2,∴AD=,
∴AP+BP的最小值为;故答案为:;
(2)如图2,
在AB上截取BF=2,连接PF,PC,∵AB=8,PB=4,BF=2,
∴,且∠ABP=∠ABP,∴△ABP∽△PBF,
∴,∴PF=AP,∴AP+PC=PF+PC,
∴当点F,点P,点C三点共线时,AP+PC的值最小,
∴CF=,
∴AP+PC的值最小值为2,故答案为:2;
(3)如图3,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,
∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,
∴,且∠AOP=∠AOP∴△AOP∽△POF
∴,∴PF=2AP∴2PA+PB=PF+PB,
∴当点F,点P,点B三点共线时,2AP+PB的值最小,
∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM
∴OM=4,FM=4,∴MB=OM+OB=4+3=7
∴FB=,∴2PA+PB的最小值为.
【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..
例6.(2022·湖北·九年级专题练习)(1)如图1,已知正方形的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值,的最小值,的最大值.
(2)如图2,已知正方形的边长为9,圆B的半径为6,点P是圆B上的一个动点,求的最小值,的最大值,的最小值.
(3)如图3,已知菱形的边长为4,,圆B的半径为2,点P是圆B上的一个动点,求的最小值和的最大值.的最小值
【答案】见详解
【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+PC的值最小,最小值为DG==5.由PD-PC=PD-PG≤DG,当点P在DG的延长线上时,PD-PC的值最大(如图2中),最大值为DG=5;可以把转化为4(),这样只需求出的最小值,问题即可解决。
(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);
(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);
【详解】(1)如图1中,在BC上取一点G,使得BG=1.
∴△PBG∽△CBP,
∵DP+PG≥DG,∴当D、G、P共线时,的值最小,最小值为DG==5.
当点P在DG的延长线上时,的值最大(如图2中),最大值为DG=5.
如图,连接BD,在BD上取一点F,使得BF=,作EF⊥BC
∵∴△PBF∽△PBD,∴PF=PD,
∴当C、F、P三点共线时会有FP+CP的最小值即PD+PC,
由图可知,△BEF为等腰直角三角形,∴BF=,BE=EF=,
∴最小值为FC===
∴的最小值为:.
(2)如图3中,在BC上取一点G,使得BG=4.
∴△PBG∽△CBP,
∵DP+PG≥DG,∴当D、G、P共线时,的值最小,最小值为DG== .
当点P在DG的延长线上时,的值最大,最大值为DG=.
(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.
∴△PBG∽△CBP,
∵DP+PG≥DG,∴当D、G、P共线时,的值最小,最小值为DG.
在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD sin60°=,CF=2,
在Rt△GDF中,DG== PC=PD-PG≤DG,
当点P在DG的延长线上时,的值最大(如图2中),最大值为DG=
【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
例7.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _____.
【答案】5
【分析】因为DG=EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证△GDI∽△CDG,从而得出GI=CG,然后根据三角形三边关系,得出BI是其最小值
【详解】解:如图,
在Rt△DEF中,G是EF的中点,∴DG=,∴点G在以D为圆心,2为半径的圆上运动,
在CD上截取DI=1,连接GI,∴==,∴∠GDI=∠CDG,∴△GDI∽△CDG,
∴=,∴IG=,∴BG+=BG+IG≥BI,
∴当B、G、I共线时,BG+CG最小=BI,在Rt△BCI中,CI=3,BC=4,∴BI=5,故答案是:5.
【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点的运动轨迹是解题的关键.
模块3:同步培优题库
全卷共25题 测试时间:80分钟 试卷满分:120分
一、选择题(本大题共5小题,每小题3分,共15分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2023春·浙江九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则AP+BP的最小值为( )
A.7 B.5 C. D.
【答案】B
【详解】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MPPA,可得AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.
答案详解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.
∵PC=3,CM=1,CA=9,∴PC2=CM CA,∴,
∵∠PCM=∠ACP,∴△PCM∽△ACP,∴,∴PMPA,∴AP+BP=PM+PB,
∵PM+PB≥BM,在Rt△BCM中,∵∠BCM=90°,CM=1,BC=7,
∴BM5,∴AP+BP≥5,∴AP+BP的最小值为5.故选:B.
2.(2023·江苏·苏州九年级阶段练习)如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,则2AP+BP的最小值为(  )
A.2 B.12 C. D.8
【答案】A
【分析】首先连接CP,在CB上取点D,使CD=1,连结AD,则有;然后根据相似三角形判定的方法,判断出△PCD∽△BCP,即可推得,AP+BP=AP+PD,即2AP+BP=2(AP+PD),再应用勾股定理,求出AP+BP的最小值为多少即可.
【详解】解: 如图,连接CP,在CB上取点D,使CD=1,连结AD,

∴,又∵∠PCD=∠BCP,∴△PCD∽△BCP.
∴,∴PD=BP,∴AP+BP=AP+PD,∴2AP+BP=2(AP+PD)
要使2AP+BP最小,只要AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,
即:AP+BP=AP+PD最小值为AD,在Rt△ACD中,CD=1,AC=6,
∴AD==,2AP+BP的最小值为2,故选:A.
【点睛】此题主要考查了最短路线问题,圆周角定理的应用,以及勾股定理的应用,要熟练掌握.
3.(2022·江苏无锡·模拟预测)如图,在平面直角坐标系中,点,点,点,以点A为圆心,4个单位长度为半径作圆,点C是⊙上的一个动点,则的最小值为( )
A. B. C. D.
【答案】A
【分析】取E(-10,0),证明△AEC∽△ACD,得到CE=CD,则可将BC+CD的最小值转化为BE的长,再利用勾股定理计算即可.
【详解】解:∵A(-12,0),B(0,4),D(-4,0),∴OA=12,OD=4,则AD=8,AC=4,
取E(-10,0),则AE=2,DE=6,在△AEC和△ACD中,∠CAE=∠DAC,,
∴△AEC∽△ACD,∴,即CE=CD,则BC+CD=BC+CE≥BE,
即BC+CD的最小值为BE的长,即为=,故选A.
【点睛】本题主要考查了相似三角形的判定与性质、两点之间线段最短原理,值得强调的是,本题是一类典型几何最值问题,构造“子母型相似”是解答此问题的关键.
4.(2022秋·江苏宿迁·九年级校联考期末)如图,在中,,,,以为圆心,4为半径作圆,交两边于点C,D,P为劣弧CD上一动点,则最小值为( ).
A.13 B. C. D.
【答案】B
【分析】当在一条直线时值最小,连接,取的中点E,证明,求出即可解得.
【详解】解:连接,取的中点E,
∵,,∴,
∴,∴,∴,
当在一条直线时值最小,,
∴最小值为,故选:B.
5.(2023·湖北武汉·校考模拟预测)如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则EFED的最小值为(  )
A.6 B.4 C.4 D.6
【答案】A
【分析】如图(见解析),在AD边上取点H,使得,连接EH、FH,先根据正方形的性质得出,,再根据相似三角形的判定与性质得出,从而可得,然后利用三角形的三边关系定理、两点之间线段最短可得取得最小值时,点E的位置,最后利用勾股定理求解即可得.
【详解】如图,在AD边上取点H,使得,连接EH、FH
四边形ABCD是正方形,
,,即
又,即
由三角形的三边关系定理得:
由题意得:点E的轨迹是在以点A为圆心,AE长为半径的圆上
由两点之间线段最短可知,当点E位于FH与圆A的交点时,取得最小值,最小值为

在中,由勾股定理得即的最小值为故选:A.
【点睛】本题是一道较难的综合题,考查了正方形的性质、相似三角形的判定与性质、三角形的三边关系定理、两点之间线段最短等知识点,通过作辅助线,构造相似三角形是解题关键.
二、填空题(本大题共13小题,每小题3分,共39分.不需写出解答过程,请把答案直接填写在横线上)
6.(2023·广西·南宁市一模)如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是_____.
【答案】
【分析】如图,取一点T(1,0),连接OP,PT,TD.首先利用四点共圆证明OP=2,再利用相似三角形的性质证明PT=PC,推出2PD+PC=2(PD+PC)=2(PD+PT),根据PD+PT≥DT,求出DT即可解决问题.
【详解】解:如图,取一点T(1,0),连接OP,PT,TD.
∵A(2,0),B(0,2),C(4,0),∴OA=OB=2,OC=4,
以O为圆心OA为半径作⊙O,在优弧AB上取一点Q,连接QB,QA,
∵∠Q=∠AOB=45°,∠APB=135°,∴∠Q+∠APB=180°,
∴A,P,B,Q四点共圆,∴OP=OA=2,∵OP=2,OT=1,OC=4,∴OP2=OC OT,
∴,∵∠POT=∠POC,∴△POT∽△COP,
∴,∴PT=PC,∴2PD+PC=2(PD+PC)=2(PD+PT),
∵PD+PT≥DT,DT=,∴2PD+PC≥,
∴2PD+PC的最小值为,故答案为:.
【点睛】本题考查几何问题的最值,相似三角形的判定和性质,四点共圆等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.
7.(2022·浙江·九年级专题练习)如图,在中,∠C=90°,CA=3,CB=4.的半径为2,点P是上一动点,则的最小值______________的最小值_______
【答案】
【分析】①在BC上取点D,使CD=BC=1,利用相似三角形的判定和性质推出,得到,即可求得的最小值AD的长;
②在AC上取点E,使CE=,同①的方法即可求得的最小值BE的长.
【详解】①在BC上取点D,使CD=BC=1,连接AD,PD,PC,由题意知:PC=2,
∵,∠PCD=∠BCP,∴,∴,
且,∴,
∴的最小值为,故答案为:;
②在AC上取点E,使CE=,连接PE,BE,PC,
∵,,∴,且∠PCE=∠ACP,
∴,∴,∴,
∴,∴,
∴的最小值为,故答案为:.
【点睛】本题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.
8.(2023·广西·九年级专题练习)如图,已知菱形的边长为4,,的半径为2,P为上一动点,则的最小值 .的最小值
【答案】
【分析】①在BC上取一点G,使得BG=1,作DF⊥BC于F.利用相似三角形的判定和性质推出,得到,由,推出当D、P、G共线时,PD+PC的值最小,最小值为DG,再利用特殊角的三角函数值以及勾股定理求解即可;
②连接BD,在BD上取一点M,使得BM=,同一的方法利用相似三角形的判定和性质推出,当M、P、C共线时,的值最小,最小值为CM,再利用含30度角的直角三角形的性质以及勾股定理求解即可.
【详解】①如图,在BC上取一点G,使得BG=1,连接PB、PG、GD,
作DF⊥BC交BC延长线于F.
∵,,∴,
∵,∴,∴,
∴,∴,
∵,∴当D、P、G共线时,PD+PC的值最小,最小值为DG,
在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD sin60°=2,CF=2,
在Rt△GDF中,DG,故答案为:;
②如图,连接BD,在BD上取一点M,使得BM=,连接PB、PM、MC,过M作MN⊥BC于N.
∵四边形ABCD是菱形,且,∴AC⊥BD,∠AOB=90,∠ABO=∠CBO=∠ABC=30,
∴AO=AB=2,BO=,∴BD=2 BO=,
∴,,∴,
且∠MBP=∠PBD,∴△MBP△PBD,∴,
∴,∴,
∴当M、P、C共线时,的值最小,最小值为CM,
在Rt△BMN中,∠CBO =30,BM=,
∴MN=BM=,BN=,∴CN=4-,
∴MC=,∴的最小值为.
【点睛】本题考查了圆综合题、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
9.(2023·重庆·九年级专题练习)如图,在中,点A、点在上,,,点在上,且,点是的中点,点是劣弧上的动点,则的最小值为 .
【答案】
【分析】延长到,使得,连接,,利用相似三角形的性质证明,求的最小值问题转化为求的最小值.求出即可判断.
【详解】解:延长到,使得,连接,.
,,,,,
,,,,
,又在中,,,,
,,
的最小值为,故答案为:.
【点睛】本题考查了相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
10.(2022春·江苏·九年级专题练习)如图所示的平面直角坐标系中,,,是第一象限内一动点,,连接、,则的最小值是 .
【答案】
【分析】取点,连接,.根据,有,即可证明,即有,进而可得,则有,利用勾股定理可得,则有,问题得解.
【详解】解:如图,取点,连接,.
,,,,,,
,,,
,,,
,,,,
,(当B、P、T三点共线时取等号)
的最小值为.故答案为:.
【点睛】本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
11.(2022·四川泸州·校考一模)如图,为的直径,,点C与点D在的同侧,且,,,,点P是上的一动点,则的最小值为 .
【答案】
【分析】连接,先利用勾股定理求得,,在上截取,过作于,于,求得,,,进而求得,证明求得,利用两点之间线段最短得到,当共线时取等号,即可求解.
【详解】解:连接,∵为的直径,,∴,
∵在中,,∴,,
在上截取,过作于,于,连接、,
∴四边形是矩形,,
∴,,∴,
在中,,
∵,是公共角,∴,
∴,则, ∴,当共线时取等号,
故的最小值为,故答案为:.
【点睛】本题考查等腰直角三角形的性质、勾股定理、圆的基本概念、相似三角形的判定与性质、两点之间线段最短等知识,解答的关键是截取在上截取,构造相似三角形求得是关键.
12.(2022·广西·一模)图所示,在半径为 6 的扇形 ABC 中, ∠BAC=60° ,点 D ,E 分别在半径 AB,AC 上,且BD=CE=2,点F 是弧BC 上的动点,连接DF,EF,则DF+EF 的最小值为 .
【答案】
【分析】连结AF,延长AC到G使CG=3,连结GF,过G作AH⊥AB于H,先证△FAE∽△GAF,得出,根据两点间距离最短得出FG+FD≥GD,即,当点G,F,D三点在同一直线上时GF+FD最短即最短=DG,然后利用30°直角三角形先证求出AH=,利用锐角三角函数求出GH=AG·cos30°=,利用勾股定理求解即可.
【详解】解:连结AF,延长AC到G使CG=3,连结GF,过G作AH⊥AB于H,
∴AG=AC+CG=6+3=9,CE=2,AE=AC-CE=4,
∵,,∴,
∵∠FAE=∠GAF,∴△FAE∽△GAF,
∴,∴,∴FG+FD≥GD,即
当点G,F,D三点在同一直线上时GF+FD最短即最短=DG,
在Rt△GHA中AG=9,∠GAH=60°,∴∠HGA=90°-∠GAH=30°,
∴AH=,GH=AG·cos30°=,
∵BD=2,∴AD=AB-BD=6-2=4,∴HD=AH-AD=,
∴GD=,∴.故答案为.
【点睛】本题考查圆与相似,解直角三角形联合应用,最短路径问题,勾股定理,利用辅助线构造三角形相似是解题关键.
13.(2022春·江苏·九年级专题练习)如图,已知菱形的边长为8,,圆的半径为4,点是圆上的一个动点,则的最大值为 .
【答案】
【分析】连接,在上取一点,使得,连接,,过点作交的延长线于.先证明,即有,可得,再根据,(当P、G、D三点共线时取等号)即可求解.
【详解】解:连接,在上取一点,使得,连接,,过点作交的延长线于.
,,,,,,
,,,,
四边形是菱形,,,
,,即,
,,,
,(当P、G、D三点共线时取等号)
,的最大值为.故答案为:.
【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造是解题的关键.
14.(2023·浙江·九年级专题练习)如图所示,,半径为2的圆内切于.为圆上一动点,过点作、分别垂直于的两边,垂足为、,则的取值范围为 .
【答案】
【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作于,作于,如图所示,通过代换,将转化为,得到当与相切时,取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.
【详解】解:作于,作于,如图所示:
,,,
,,
,,
,当与相切时,取得最大和最小,
①连接,,,如图1所示:
可得:四边形是正方形,,
在中,,,
在中,,
,即;
②连接,,,如图2所示:
可得:四边形是正方形,,
由上同理可知:在中,,,
在中,,
,即,
.故答案为:.
【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.
15.(2023秋·浙江温州·九年级校考期末)如图,在边长为4的正方形ABCD内有一动点P,且BP=.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则DQ+CQ的最小值为 .
【答案】5
【分析】连接AC、AQ,先证明△BCP∽△ACQ得即AQ=2,在AD上取AE=1,证明△QAE∽△DAQ得EQ=QD,故DQ+CQ=EQ+CQ≥CE,求出CE即可.
【详解】解:如图,连接AC、AQ,
∵四边形ABCD是正方形,PC绕点P逆时针旋转90°得到线段PQ,∴∠ACB=∠PCQ=45°,
∴∠BCP=∠ACQ,cos∠ACB=,cos∠PCQ=,
∴∠ACB=∠PCO,∴△BCP∽△ACQ,∴
∵BP=,∴AQ=2,∴Q在以A为圆心,AQ为半径的圆上,在AD上取AE=1,
∵,,∠QAE=∠DAQ, ∴△QAE∽△DAQ,
∴即EQ=QD,∴DQ+CQ=EQ+CQ≥CE,连接CE,
∴,∴DQ+CQ的最小值为5.故答案为:5.
【点睛】本题主要考查了正方形的性质,旋转的性质,相似三角形的性质与判定,三角函数,解题的关键在于能够连接AC、AQ,证明两对相似三角形求解.
16.(2022·广东·九年级专题练习)如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .

【答案】
【分析】如下图,在CA上取一点E,使得CE=4,先证△DCE∽△ACD,将转化为DE,从而求得的最小距离,进而得出2AD+3BD的最小值.
【详解】如下图,在CA上取一点E,使得CE=4 ∵AC=9,CD=6,CE=4 ∴

∵∠ECD=∠ACD∴△DCE∽△ACD ∴∴ED=
在△EDB中,ED+DB≥EB ∴ED+DB最小为EB,即ED+DB=EB
∴ 在Rt△ECB中,EB=
∴∴2AD+3DB=故答案为:.
【点睛】本题考查求最值问题,解题关键是构造出△DCE∽△ACD.
17.(2020·广西·中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是 .
【答案】.
【分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.
【详解】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.
∵PA=2.AT=1,AB=4,∴PA2=AT AB,∴=,
∵∠PAT=∠PAB,∴,∴==,∴PT=PB,∴PB+CP=CP+PT,
∵PC+PT≥TC,在Rt中,∵∠CAT=90°,AT=1,AC=4,
∴CT==,∴PB+PC≥,∴PB+PC的最小值为.故答案为.
【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.
18.(2023·江苏·九年级专题练习)如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是 .
【答案】
【分析】作BH⊥AC于H,取BC的中点D,连接PD,如图,根据切线的性质得BH为⊙B的半径,再根据等腰直角三角形的性质得到BHAC,接着证明△BPD∽△BCP得到PDPC,所以PAPC=PA+PD,而PA+PD≥AD(当且仅当A、P、D共线时取等号),从而计算出AD得到PA的最小值.
【详解】解:作BH⊥AC于H,取BC的中点D,连接PD,如图,
∵AC为切线,∴BH为⊙B的半径,
∵∠ABC=90°,AB=CB=2,∴ACBA=2,∴BHAC,∴BP,
∵,,而∠PBD=∠CBP,∴△BPD∽△BCP,
∴,∴PDPC,∴PAPC=PA+PD,
而PA+PD≥AD(当且仅当A、P、D共线时取等号),而AD,
∴PA+PD的最小值为,即PA的最小值为.故答案为:.
【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PDPC.也考查了等腰直角三角形的性质.
三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)
19.(2023·江苏扬州·校联考二模)请认真阅读下列材料:
如图①,给定一个以点O为圆心,r为半径的圆,设点A是不同于点O的任意一点,则点A的反演点定义为射线上一点,满足.
显然点A也是点的反演点.即点A与点互为反演点,点O为反演中心,r称为反演半径.这种从点A到点的变换或从点到点A的变换称为反演变换.
例如:如图②,在平面直角坐标系中,点,以点O为圆心,为半径的圆,交y轴的正半轴于点B;C为线段的中点,P是上任意一点,点D的坐标为;若C关于的反演点分别为.
(1)求点的坐标;(2)连接、,求的最小值.
解:(1)由反演变换的定义知:,其中,.
∴,故点的坐标为;
(2)如图③,连接、,由反演变换知,
即,而,∴.
∴,即.
∴.故的最小值为13.
请根据上面的阅读材料,解决下列问题:
如图④,在平面直角坐标系中,点,以点O为圆心,为半径画圆,交y轴的正半轴于点B,C为线段的中点,P是上任意一点,点D的坐标为.
(1)点D关于的反演点的坐标为________;(2)连接、,求的最小值;
(3)如图⑤,以为直径作,那么上所有的点(点O除外)关于的反演点组成的图形具有的特征是__________________.
【答案】(1);(2)13;(3)过点A且与x轴垂直的一条直线
【分析】(1)根据反演变换的定义即可求出结论;
(2)连接,根据相似三角形的判定定理证出,列出比例式即可求出,然后代入所求关系式并根据两点之间线段最短即可求出结论;
(3)在上任取一点P,连接OP并延长至点P关于的反演点,连接AP和,根据相似三角形的判定定理证出,根据相似三角形的性质可得,然后根据直径所对的圆周角是直角即可求出=90°,从而得出结论.
【详解】解:(1)由反演变换的定义知:,其中,.
∴,∴点D关于的反演点的坐标为 故答案为:;
(2)连接,
由反演变换知,即,而,
∴.∴,即.
∴.故的最小值13.
(3)在上任取一点P,连接OP并延长至点P关于的反演点,连接AP和
由反演变换知,即,而,
∴,∴
∵OA为的直径∴90°∴=90°∴⊥x轴
∴上所有的点(点O除外)关于的反演点组成的图形具有的特征是过点A且与x轴垂直的一条直线
故答案为:过点A且与x轴垂直的一条直线.
【点睛】此题考查的是圆的综合题型和相似三角形的判定及性质,掌握直径所对的圆周角是直角、相似三角形的判定及性质和反演变换的定义是解题关键.
20.(2023·江苏·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:
①,②,③,④的最小值.
【答案】①;②;③;④.
【分析】①在CB上取点D,使,连接CP、DP、AD.根据作图结合题意易证,即可得出,从而推出,说明当A、P、D三点共线时,最小,最小值即为长.最后在中,利用勾股定理求出AD的长即可;
②由,即可求出结果;③在CA上取点E,使,连接CP、EP、BE.根据作图结合题意易证,即可得出,从而推出,说明当B、P、E三点共线时,最小,最小值即为长.最后在中,利用勾股定理求出BE的长即可;
④由,即可求出结果.
【详解】解:①如图,在CB上取点D,使,连接CP、DP、AD.
∵,,,∴.
又∵,∴,∴,即,∴,
∴当A、P、D三点共线时,最小,最小值即为长.
∵在中,.∴的最小值为;
②∵,∴的最小值为;
③如图,在CA上取点E,使,连接CP、EP、BE.
∵,,,∴.
又∵,∴,
∴,即,∴,
∴当B、P、E三点共线时,最小,最小值即为长.
∵在中,.∴的最小值为;
④∵,∴的最小值为.
【点睛】本题考查圆的基本性质,相似三角形的判定和性质,勾股定理.正确的作出辅助线,并且理解三点共线时线段最短是解答本题的关键.
21.(2023·江苏·九年级专题练习)如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD
(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;
(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.
【答案】(1)见解析;(2)或 ;(3)
【分析】(1)利用SAS,即可证明△FCA≌△DCB;(2)分两种情况当点D,E在AB边上时和当点E,F在边AB上时,讨论即可求解;(3)取AC的中点M.连接DM,BM.则CM=1,可证得△DCM∽△ACD,可得DM=AD,从而得到当B,D,M共线时,BD+AD的值最小,即可求解.
【详解】(1)证明: ∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,
∵AC=CB,∴△FCA≌△DCB(SAS);
(2)解:①如图2中,当点D,E在AB边上时,
∵AC=BC=2,∠ACB=90°,∴,
∵CD⊥AB,∴AD=BD=,∴BD+AD=;
②如图3中,当点E,F在边AB上时.
BD=CF=,AD==,
∴BD+AD=,综上所述,BD+AD的值或;
(3)如图4中.取AC的中点M.连接DM,BM.则CM=1,
∵CD=,CM=1,CA=2,∴CD2=CM CA,∴=,
∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,
∴当B,D,M共线时,BD+AD的值最小,最小值.
【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,锐角三角函数,熟练掌握相关知识点是解题的关键.
22.(2022·广东·统考二模)(1)初步研究:如图1,在△PAB中,已知PA=2,AB=4,Q为AB上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,⊙A的半径为2,点P是⊙A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,∠A=60°,⊙A的半径为2,点P是⊙A上的一个动点,求2PC PB的最大值.
【答案】(1)见解析;(2)10;(3)
【分析】(1)证明△PAQ∽△BAP,根据相似三角形的性质即可证明PB=2PQ;
(2)在AB上取一点Q,使得AQ=1,由(1)得PB=2PQ,推出当点C、P、Q三点共线时,PC+PQ的值最小,再利用勾股定理即可求得2PC+PB的最小值;
(3)作出如图的辅助线,同(2)法推出当点P在CQ交⊙A的点P′时,PC PQ的值最大,再利用勾股定理即可求得2PC PB的最大值.
【详解】解:(1)证明:∵PA=2,AB=4,AQ=1,∴PA2=AQ AB=4.∴.
又∵∠A=∠A,∴△PAQ∽△BAP.∴.∴PB=2PQ;
(2)如图,在AB上取一点Q,使得AQ=1,连接AP,PQ,CQ.
∴AP=2,AB=4,AQ=1.由(1)得PB=2PQ,∴2PC+PB=2PC+2PQ=2(PC+PQ).
∵PC+PQ≥QC,∴当点C、P、Q三点共线时,PC+PQ的值最小.
∵QC==5,∴2PC+PB=2(PC+PQ)≥10.∴2PC+PB的最小值为10.
(3)如图,在AB上取一点Q,使得AQ=1,连接AP,PQ,CQ,延长CQ交⊙A于点P′,过点C作CH垂直AB的延长线于点H.易得AP=2,AB=4,AQ=1.
由(1)得PB=2PQ,∴2PC PB=2PC 2PQ=2(PC PQ) ,
∵PC PQ≤QC,∴当点P在CQ交⊙A的点P′时,PC PQ的值最大.
∵QC= =,∴2PC PB=2(PC PQ)≤2.∴2PC PB的最大值为2.
【点睛】本题考查了圆有关的性质,正方形的性质,菱形的性质,相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决.
23.(2023·山东济宁·校考三模)已知:抛物线经过,,.

(1)求抛物线解析式.(2)在线段下方抛物线上一点,连接、,当面积最大时,求:点坐标及面积最大值.(3)如图2,直线交轴于点,取点,取线段的中点,以原点为圆心,长为半径做,点是上的动点,连接、.求:的最小值.
【答案】(1)(2);面积最大值为4(3)
【分析】(1)用待定系数法即可求出抛物线的解析式.
(2)点做轴,根据题意求出和的横坐标,再利用和的横坐标表示出面积,转化成二次函数,利用二次函数的最值情况即可求出最大面积.
(3)根据为中点,取的中点,连接,建构,证明推出,要想满足最小,只能是、、在同一直线,转化,利用点坐标求出点坐标,最后根据点到点之间的公式求出最小值.
【详解】(1)解:设抛物线解析式为,
将,,代入解析式得:,解得:,
抛物线解析式为.故答案为:.
(2)解:过点做轴交于点,

设,,,直线的解析式为:.
在直线上,在抛物线上,则,



,时,,.
故答案为:;面积最大值为4.
(3)解:取的中点,连接,,如图所示,

,,,
为线段的中点,,
,,,
.,
当、、在同一直线上时最小.
是中点,是中点,,,.
.故答案为:.
【点睛】本题考查了二次函数和面积问题,圆的综合题.涉及到三角形相似判定,解题的关键在于利用参数表达面积转化成二次函数最值问题,利用三角形相似判定转化对应线段相等,利用点到点之间的距离公式求出线段长.
24.(2022春·浙江·九年级期末)问题提出:
如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连接AP,BP,求AP+BP的最小值
(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连接CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠   
△   ∽△   

∴PD=BP
∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为   .
(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则AP+PC的最小值为   .(请在图3中添加相应的辅助线)
(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
【答案】(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.
【分析】(1)连接AD,过点A作AF⊥CB于点F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;
(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=4,BF=2,证明△ABP∽△PBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;
(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,确定,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.
【详解】解:
(1)如图1,
连接AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,
∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,
∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;
∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值为;故答案为:;
(2)如图2,
在AB上截取BF=2,连接PF,PC,
∵AB=8,PB=4,BF=2,∴,且∠ABP=∠ABP,
∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,
∴当点F,点P,点C三点共线时,AP+PC的值最小,
∴CF=,∴AP+PC的值最小值为2,故答案为:2;
(3)如图3,
延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,
∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,
∴,且∠AOP=∠AOP∴△AOP∽△POF
∴,∴PF=2AP∴2PA+PB=PF+PB,
∴当点F,点P,点B三点共线时,2AP+PB的值最小,
∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM
∴OM=4,FM=4,∴MB=OM+OB=4+3=7
∴FB=,∴2PA+PB的最小值为.
【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..
25.(2022春·浙江宁波·九年级统考阶段练习)【根底巩固】
(1)如图,在中,为上一点,.求证:.
【尝试应用】(2)如图2,在菱形中,分别为上的点,且,射线交的延长线与点,射线交的延长线于点.若.求:①CM的长;②FN的长.
【拓展进步】(3)如图3,在菱形中,,以点为圆心作半径为3的圆,其中点是圆上的动点,请直接写出的最小值.
【答案】(1)证明见解析;(2)①;②;(3)
【分析】(1)由,,可得,进而有,根据比例的基本性质即可得出结论成立;(2)①连结,由菱形可得,进而证明,得即可求出的长;②由得,再证明得,求得,从而求得;(3)如图4,过点D作DM垂直BC的延长线于点M,在BC上取一点Q,使得BQ=,连接PB,DQ,先利用勾股定理求出,,再证明得出
,从而得出即可得出最小值.
【详解】(1)证明:∵,,
∴,∴,∴.
(2)解:①连结,
在菱形中,,∴,
∵,∴,∴,
又∵,∴,∴,
∵,,∴,∴,
②∵,∴,∴,
又∵,∴,
又因为,∴,∴,∴,∴.
(3)解:如图4,过点D作DM垂直BC的延长线于点M,在BC上取一点Q,使得BQ=,连接PB,DQ,
菱形中,,,,
,,CM=,
,,
,BQ=,,,,
,,,,
即,,最小值为 .
【点睛】本题主要考查了圆的概念、三角形的两边之和大于第三边、勾股定理、相似三角形的性质和判定及菱形的性质,构造辅助线将求和的两条线段转入同一三角形中利用三角形的两边之和大于第三边求最小值是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题2.6 阿氏圆模型(最值模型)
模块1:模型简介及知识储备
【模型背景】已知平面上两点A、B,则所有满足 PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
【模型解读】如图 1 所示,⊙O的半径为 r,点 A、B都在⊙O 外,P为⊙O上一动点,已知r=k·OB, 连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?
如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为 “PA+PC”的最小值,
其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。如图3所示:
注意区分胡不归模型和阿氏圆模型:
在前面的“胡不归”问题中,我们见识了“k·PA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.
【最值原理】两点之间线段最短及垂线段最短解题。
模块2:核心模型点与典例
例1.(2023·山西·九年级专题练习)如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是___________.
例2.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.
例3.(2022·浙江·舟山九年级期末)如图,矩形中,,以B为圆心,以为半径画圆交边于点E,点P是弧上的一个动点,连结,则的最小值为( )
A. B. C. D.
例4.(2022·江苏·无锡市九年级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 ___.
例5.(2023·浙江·一模)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值
(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连结CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠   
△   ∽△   
∴ ∴PD=BP ∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为   .
(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则AP+PC的最小值为   .(请在图3中添加相应的辅助线)
(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
例6.(2022·湖北·九年级专题练习)(1)如图1,已知正方形的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值,的最小值,的最大值.
(2)如图2,已知正方形的边长为9,圆B的半径为6,点P是圆B上的一个动点,求的最小值,的最大值,的最小值.
(3)如图3,已知菱形的边长为4,,圆B的半径为2,点P是圆B上的一个动点,求的最小值和的最大值.的最小值
例7.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _____.
模块3:同步培优题库
全卷共25题 测试时间:80分钟 试卷满分:120分
一、选择题(本大题共5小题,每小题3分,共15分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2023春·浙江九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则AP+BP的最小值为( )
A.7 B.5 C. D.
2.(2023·江苏·苏州九年级阶段练习)如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,则2AP+BP的最小值为(  )
A.2 B.12 C. D.8
3.(2022·江苏无锡·模拟预测)如图,在平面直角坐标系中,点,点,点,以点A为圆心,4个单位长度为半径作圆,点C是⊙上的一个动点,则的最小值为( )
A. B. C. D.
4.(2022秋·江苏宿迁·九年级校联考期末)如图,在中,,,,以为圆心,4为半径作圆,交两边于点C,D,P为劣弧CD上一动点,则最小值为( ).
A.13 B. C. D.
5.(2023·湖北武汉·校考模拟预测)如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则EFED的最小值为(  )
A.6 B.4 C.4 D.6
二、填空题(本大题共13小题,每小题3分,共39分.不需写出解答过程,请把答案直接填写在横线上)
6.(2023·广西·南宁市一模)如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是_____.
7.(2022·浙江·九年级专题练习)如图,在中,∠C=90°,CA=3,CB=4.的半径为2,点P是上一动点,则的最小值______________的最小值_______
8.(2023·广西·九年级专题练习)如图,已知菱形的边长为4,,的半径为2,P为上一动点,则的最小值 .的最小值
9.(2023·重庆·九年级专题练习)如图,在中,点A、点在上,,,点在上,且,点是的中点,点是劣弧上的动点,则的最小值为 .
10.(2022春·江苏·九年级专题练习)如图所示的平面直角坐标系中,,,是第一象限内一动点,,连接、,则的最小值是 .
11.(2022·四川泸州·校考一模)如图,为的直径,,点C与点D在的同侧,且,,,,点P是上的一动点,则的最小值为 .
12.(2022·广西·一模)图所示,在半径为 6 的扇形 ABC 中, ∠BAC=60° ,点 D ,E 分别在半径 AB,AC 上,且BD=CE=2,点F 是弧BC 上的动点,连接DF,EF,则DF+EF 的最小值为 .
13.(2022春·江苏·九年级专题练习)如图,已知菱形的边长为8,,圆的半径为4,点是圆上的一个动点,则的最大值为 .
14.(2023·浙江·九年级专题练习)如图所示,,半径为2的圆内切于.为圆上一动点,过点作、分别垂直于的两边,垂足为、,则的取值范围为 .
15.(2023秋·浙江温州·九年级校考期末)如图,在边长为4的正方形ABCD内有一动点P,且BP=.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则DQ+CQ的最小值为 .
16.(2022·广东·九年级专题练习)如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .

17.(2020·广西·中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是 .
18.(2023·江苏·九年级专题练习)如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是 .
三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)
19.(2023·江苏扬州·校联考二模)请认真阅读下列材料:
如图①,给定一个以点O为圆心,r为半径的圆,设点A是不同于点O的任意一点,则点A的反演点定义为射线上一点,满足.
显然点A也是点的反演点.即点A与点互为反演点,点O为反演中心,r称为反演半径.这种从点A到点的变换或从点到点A的变换称为反演变换.
例如:如图②,在平面直角坐标系中,点,以点O为圆心,为半径的圆,交y轴的正半轴于点B;C为线段的中点,P是上任意一点,点D的坐标为;若C关于的反演点分别为.
(1)求点的坐标;(2)连接、,求的最小值.
解:(1)由反演变换的定义知:,其中,.
∴,故点的坐标为;
(2)如图③,连接、,由反演变换知,
即,而,∴.
∴,即.
∴.故的最小值为13.
请根据上面的阅读材料,解决下列问题:
如图④,在平面直角坐标系中,点,以点O为圆心,为半径画圆,交y轴的正半轴于点B,C为线段的中点,P是上任意一点,点D的坐标为.
(1)点D关于的反演点的坐标为________;(2)连接、,求的最小值;
(3)如图⑤,以为直径作,那么上所有的点(点O除外)关于的反演点组成的图形具有的特征是__________________.
20.(2023·江苏·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:
①,②,③,④的最小值.
21.(2023·江苏·九年级专题练习)如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD
(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.
22.(2022·广东·统考二模)(1)初步研究:如图1,在△PAB中,已知PA=2,AB=4,Q为AB上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,⊙A的半径为2,点P是⊙A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,∠A=60°,⊙A的半径为2,点P是⊙A上的一个动点,求2PC PB的最大值.
23.(2023·山东济宁·校考三模)已知:抛物线经过,,.

(1)求抛物线解析式.(2)在线段下方抛物线上一点,连接、,当面积最大时,求:点坐标及面积最大值.(3)如图2,直线交轴于点,取点,取线段的中点,以原点为圆心,长为半径做,点是上的动点,连接、.求:的最小值.
24.(2022春·浙江·九年级期末)问题提出:
如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连接AP,BP,求AP+BP的最小值
(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连接CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠   
△   ∽△   

∴PD=BP
∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为   .
(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则AP+PC的最小值为   .(请在图3中添加相应的辅助线)
(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
25.(2022春·浙江宁波·九年级统考阶段练习)【根底巩固】
(1)如图,在中,为上一点,.求证:.
【尝试应用】(2)如图2,在菱形中,分别为上的点,且,射线交的延长线与点,射线交的延长线于点.若.求:①CM的长;②FN的长.
【拓展进步】(3)如图3,在菱形中,,以点为圆心作半径为3的圆,其中点是圆上的动点,请直接写出的最小值.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)