浙教版数学九下3.2.2简单几何体的三视图 课件(26张PPT)+教案+大单元整体教学设计

文档属性

名称 浙教版数学九下3.2.2简单几何体的三视图 课件(26张PPT)+教案+大单元整体教学设计
格式 zip
文件大小 2.2MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2024-02-18 08:46:44

文档简介

中小学教育资源及组卷应用平台
分课时教学设计
第一课时《3.2.2简单几何体的三视图》教学设计
课型 新授课√ 复习课口 试卷讲评课口 其他课口
教学内容分析 本节课是九年级下册第三章第二节第二课时的内容,圆柱和圆锥是人们在日常生活中经常接触到的立体图形,我们要研究它,往往把它转化成平面图形来研究。图形的三视图是立体图形转化成平面图形的一种形式,而下一节的“立体图形的表面展开图”是由立体图形转化成平面图形的另一种形式,所以本节课内容将是由立体图形到平面图形的一个纽带,学好它至关重要。
学习者分析 本节课的教学对象是九年级学生。在知识结构上,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的视图的方法,但是对于三视图的概念还不清晰;在思维状况上,学生的思维水平是以逻辑思维为主,空间想象能力有所欠缺;但这一阶段学生的空间想象能力和发散能力正在逐渐增强,只要加以锻炼,学生便能较好的掌握三视图与几何体之间的转化
教学目标 1.会画圆柱、圆锥的三种视图,体会这几种几何体与其视图之间的相互转化. 2.通过画简单物体的三视图,发展动手操作能力和合情推理能力. 3.结合具体实例,进一步体会视图在现实生活中的应用,感受数学与现实生活的紧密联系,增强学生的数学应用意识.
教学重点 会画圆柱、圆锥的三种视图
教学难点 体会这几种几何体与其视图之间的相互转化。
学习活动设计
教师活动学生活动环节一:引入新课教师活动1: 1.什么是正投影? 在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。 画直棱柱的三视图的法则是什么? “长对正、高平齐、宽相等”. 如何画圆柱的三视图?圆锥呢?学生活动1: 学生复习上节课学习的知识点。活动意图说明:通过复习,让学生进一步加深对三视图的理解,为本节课探究圆柱和圆锥的三视图的画法奠定基础。环节二:新知探究教师活动2: 同学们,你能说一说圆柱是由什么图形构成的吗? 圆柱是由两个大小相等且相互平行的圆形底面和一个连接两个底面的曲面侧面组成。 你会画圆柱的三视图吗? 想一想:按所标的主视方向说出它在正投影面、水平投影面、侧投影面上的正投影各是什么图形? 圆柱在正投影面上的正投影是矩形,在水平投影面上的正投影是圆,在侧投影面上的正投影是矩形. 圆柱的三视图 学生活动2: 学生根据以前学过的圆柱说出圆柱的组成部分。 学生在教师的引导下探究圆柱的三视图 活动意图说明:这部分内容是教学中的一个重要部分,主要让学生掌握圆柱的三视图以及作三视图的方法。通过多媒体演示从正面、上面、左面三个方向画出圆柱的三视图,教会学生作三视图的方法。体验教学再创造的思维过程,培养学生的创造意识和科学精神。环节三:典例精析教师活动3: 例1 如图,一个圆柱的底面半径为1.2 cm,高为1.6 cm.按所标的主视方向说出它在正投影面、水平投影面、侧投影面上的正投影各是什么图形,并按指定的主视方向画出它的三视图(比例为1:1). 解:圆柱在正投影面上的正投影是矩形,在水平投影面上的正投影是圆,在侧投影面上的正投影是矩形.其三视图如图. 当圆柱体如图所示放置时,三视图和刚刚的一样吗? 试画出此时圆柱体的三视图. 从不同角度观察同一物体得到的三视图是不一样的! 归纳总结: 对于同一个物体,如果选择不同的主视方向,那么画出的三视图也将不同. 画物体的三视图时我们通常选择合适的主视方向,使得三视图易画、易读. 例2 如图,一个圆锥的底面直径为8 cm,高为6 cm.按1:4的比例画出它的三视图. 按1:4的比例,主视图、左视图是底边长为2 cm,高线长为1.5 cm的等腰三角形,俯视图是直径为2 cm的圆. 解:所求三视图如下. 方法归纳 1.画三视图时如果有尺寸比例的要求,要先把实际尺寸按题目要求比例转换成图上尺寸,再画出三视图。 2.圆锥的主视图、左视图是等腰三角形,高线长是圆锥的高,底边长是圆锥底面圆的直径。 3.圆锥的俯视图是圆,注意圆心不能遗漏,它表示圆锥的顶点在水平投影面上的投影。学生活动3: 学生自主解答,教师进行个别指导 活动意图说明:培养学生应用数学的意识。进一步加深对三视图作法的印象。
板书设计 简单几何体的三视图 圆柱、圆锥等旋转体的三视图画法.
课堂练习 【知识技能类作业】 必做题: 1.如图所示的几何体的主视图是 (   ) A    B     C    D 2.下列几何体中,主视图为三角形的是(  ) 3.如图是一个水平放置的圆柱形物体,中间有一个细棒,则此物体的俯视图是(  ) 4.下列几何体中,主视图与俯视图不相同的是 (   ) A.正方体  B.四棱柱   C.圆柱   D.球 选做题: 5.如图是一个带有方形空洞和圆形空洞的儿童玩具.如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(  ) 6.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是(  ) 【综合拓展类作业】 7.画出如图所示的几何体的主视图、左视图和俯视图.
课堂总结
作业设计 【知识技能类作业】 必做题: 1.沿圆柱体上底面直径截去一部分后的几何体如图所示,它的俯视图是 (   ) A B C D 2.如图所示的几何体的左视图是 (   ) A     B    C      D 2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法. “牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是(  ) 选做题 3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是(  ) 4.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是(  ) A.主视图和左视图 B.主视图和俯视图 C.左视图和俯视图 D.主视图、左视图、俯视图 【综合拓展类作业】 5.如图,画出几何体的三视图.
教学反思 课堂环节时间把握和调节需要加强,学生讨论的时间把握不精确,环节设置需要更加丰富,帮助学生有效掌握知识。注重培养自身课堂掌控能力,丰富课堂,整合多种教学资源,提高教学效果;因材施教,分层次教学,使每个层次的学生都能有所收获,有所满足;注重培养学生的创新意识,促使学生善于发现问题,敢于提出问题。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
学 科 数学 年 级 九 设计者
教材版本 浙教版 册、章 下册第三章
课标要求 1)通过丰富的实例,了解中心投影和平行投影的概念; 2)会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体; 3)了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作模型; 4)通过实例,了解上述视图与展开图在现实生活中的应用.
内容分析 本章的视图部分是“丰富的图形世界”内容的继续学习和深化.本章进一步对特殊的几何体-圆柱、圆锥、球、直三棱柱和直四棱柱的三种视图进行识别并能画出其三种视图.而视图与平行投影又有着密切的联系,在特殊位置下物体的投影便是物体的三种视图.而视点、视线又与中心投影和射线密切相关.在视图部分,学生由各种实物的形状而想象出圆柱、圆锥、球、直三棱柱和直四棱柱形,能画出这些几何体的三种视图,并能实现这些几何体与其三视图的相互转化,是空间观念形成的一个重要的方面.教科书从学生的生活经验出发,借助于实物,先让学生抽象出其几何体,然后再尝试画出其三种视图.
学情分析 初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
单元目标 教学目标 1)以分析实际例子为背景,认识投影和视图的基本概念和基本性质; 2)通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力; 3) 通过制作立体模型的学习,在实际动手中进一步加深对投影和识图知识的认识,加强在实践活动中动手动脑理论结合实际的能力. (二)教学重点、难点 教学重点:1)理解平行投影和中心投影的特征; 2)从投影的角度加深对三视图概念的理解;会画简单几何体及其组合的三视图 教学难点:在投影面上画出平面图形的平行投影或中心投影;正确画出各种几何体与组合体的三视图.
单元知识结构框架及课时安排 (
活动1:通过现实生活中的问题引入课题
)(一)单元知识结构框架 (
活动
2
:探究平行投影
) (
3
.1
.投影(第1课时)
) (
3.3由三视图描述几何体
) (
活动
3
:例题
) (
活动2:合作学习几何体的描述方法
) (
活动1:引入课题
) (
活动
3
:例题
) (
活动
2
:探究圆柱,圆锥等简单旋转体的三视图
) (
活动3:例题
) (
活动2:探究中心投影
) (
活动1:引入课题
) (
3.1投影(第2课时)
) (
3.2简单几何体的三视图(第三课时)
) (
投影与三视图
) (
活动2:探究三视图的性质解决实际问题
) (
3.2简单几何体的三视图(第1课时)
) (
活动1:引入课题
) (
3.2简单几何体的三视图(第二课时)
) (
活动3:例题
) (
活动1:引入课题
) (
活动3:例题
) (
活动
1
:引入课题
) (
活动2:认识三视图并会画三视图
) (
活动
3
:例题
)
(
活动1:引入课题
) (
活动
3
:例题
) (
活动2:探究立方体的平面展开图
) (
3.4简单几何体的平面展开图(第1课时)
) (
投影与三视图
) (
活动1:引入课题
) (
3.4简单几何体的平面展开图(第2课时)
) (
活动
3
:例题
) (
活动2:探究圆柱的平面展开图
) (
活动2:探究圆锥的平面展开图
) (
活动1:引入课题
) (
3.4简单几何体的平面展开图(第3课时)
) (
活动
3
:例题
) (二)课时安排 课时编号单元主要内容课时数3.1投影23.2简单几何体的三视图33.3由三视图描述几何体13.4简单几何体的表面展开图3
达成评价 课题课时目标达成评价评价任务3.1投影1.认识平行投影和中心投影 2.会画物体的平行投影和中心投影学生能画出物体的不同投影,并能解决一些实际问题任务1.认识投影 任务2.探究投影的性质 任务3.出示例题3.2简单几何体的三视图1.了解正投影和三视图的概念并掌握三视图的画法. 2.学生关注生活中有关投影的数学问题 3.会画简单组合体的三视图学生会画三视图,并能运用三视图解决实际问题任务1:认识三视图 任务2.探究三视图的画法 任务3.出示例题3.3由三视图描述几何体1、理解三视图与立体图之间的关系 2、掌握由三视图画立体图形的步骤 会由三视图画出立体图形 任务1.出示问题 任务2.探究三视图画立体图形的步骤 任务3.出示例题 3.4简单几何体的表面展开图1.立体图形与平面图形之间的关系,能识别常见的立体图形展开图 2.掌握立方体,圆柱,圆锥的展开图学生认识立体图形的平面展开图,并由展开图解决一些实际问题任务1.出示问题 任务2.探究立方体,圆柱,圆锥的平面展开图 任务3.出示例题
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)(共26张PPT)
3.2.2简单几何体的三视图
浙教版九年级下册
内容总览
教学目标
01
新知导入
02
新知讲解
03
课堂练习
04
课堂总结
05
板书设计
06
目录
作业布置
07
教学目标
1.会画圆柱、圆锥的三种视图,体会这几种几何体与其视图之间的相互转化.
2.通过画简单物体的三视图,发展动手操作能力和合情推理能力.
3.结合具体实例,进一步体会视图在现实生活中的应用,感受数学与现实生活的紧密联系,增强学生的数学应用意识.
新知导入
什么是正投影?
画直棱柱的三视图的法则是什么?
如何画圆柱的三视图?圆锥呢?
在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影.
“长对正、高平齐、宽相等”.
新知讲解
同学们,你能说一说圆柱是由什么图形构成的吗?
圆柱是由两个大小相等且相互平行的圆形底面和一个连接两个底面的曲面侧面组成。
新知讲解
你会画圆柱的三视图吗?
想一想:按所标的主视方向说出它在正投影面、水平投影面、侧投影面上的正投影各是什么图形?
圆柱在正投影面上的正投影是矩形,在水平投影面上的正投影是圆,在侧投影面上的正投影是矩形.
新知讲解
主 视 图
左 视 图
俯 视 图
圆柱的三视图
典例精析
例1 如图,一个圆柱的底面半径为1.2 cm,高为1.6 cm.按所标的主视方向说出它在正投影面、水平投影面、侧投影面上的正投影各是什么图形,并按指定的主视方向画出它的三视图(比例为1:1).
解:圆柱在正投影面上的正投影是矩形,在水平投影面上的正投影是圆,在侧投影面上的正投影是矩形.其三视图如图.
典例精析
俯视图
左视图
主视图
新知讲解
当圆柱体如图所示放置时,三视图和刚刚的一样吗?
试画出此时圆柱体的三视图.
从不同角度观察同一物体得到的三视图是不一样的!
归纳总结
对于同一个物体,如果选择不同的主视方向,那么画出的三视图也将不同.
画物体的三视图时我们通常选择合适的主视方向,使得三视图易画、易读.
典例精析
例2 如图,一个圆锥的底面直径为8 cm,高为6 cm.按1:4的比例画出它的三视图.
按1:4的比例,主视图、左视图是底边长为2 cm,高线长为1.5 cm的等腰三角形,俯视图是直径为2 cm的圆.
主视方向
典例精析
解:所求三视图如下.
不能漏掉!
A
B
O
C
主视方向
主视图
俯视图
左视图
方法归纳
1.画三视图时如果有尺寸比例的要求,要先把实际尺寸按题目要求比例转换成图上尺寸,再画出三视图。
2.圆锥的主视图、左视图是等腰三角形,高线长是圆锥的高,底边长是圆锥底面圆的直径。
3.圆锥的俯视图是圆,注意圆心不能遗漏,它表示圆锥的顶点在水平投影面上的投影。
课堂练习
【知识技能类作业】必做题:
1.如图所示的几何体的主视图是 (   )
A    B    C    D
C
2.下列几何体中,主视图为三角形的是(  )
A
课堂练习
【知识技能类作业】必做题:
3.如图是一个水平放置的圆柱形物体,中间有一个细棒,则此物体的俯视图是(  )
C
4.下列几何体中,主视图与俯视图不相同的是 (   )
A.正方体  B.四棱柱   C.圆柱   D.球
B
课堂练习
【知识技能类作业】选做题:
5.如图是一个带有方形空洞和圆形空洞的儿童玩具.如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是(  )
B
6.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是(  )
A
课堂练习
【综合拓展类作业】
7.画出如图所示的几何体的主视图、左视图和俯视图.
解:几何体的主视图、左视图、俯视图如图所示.
课堂总结
简单几何体的三视图
圆柱的三视图
圆锥的三视图
注意
画物体的三视图时我们通常选择合适的主视方向,使得三视图易画、易读.
板书设计
简单几何体的三视图
圆柱、圆锥等旋转体的三视图画法.
作业布置
【知识技能类作业】必做题:

1.沿圆柱体上底面直径截去一部分后的几何体如图所示,它的俯视图是 (   )
A B C D
D
2.如图所示的几何体的左视图是 (   )
A     B    C     D
D
作业布置
【知识技能类作业】必做题:


2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.
“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是(  )
A
作业布置
【知识技能类作业】选做题:
3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是(  )
C
4.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是(  )
A.主视图和左视图 B.主视图和俯视图
C.左视图和俯视图 D.主视图、左视图、俯视图
A
作业布置
【综合拓展类作业】
5.如图,画出几何体的三视图.
解:如答图所示.
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin