新浙教版八年级上册三角形常见辅助线做法

文档属性

名称 新浙教版八年级上册三角形常见辅助线做法
格式 zip
文件大小 172.7KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2015-06-09 10:20:38

图片预览

文档简介

三 角 形 常 见 辅 助 线 做 法
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
应用:
(09崇文二模)以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.
(1)如图① 当为直角三角形时,AM与DE的位置关系是 ,
线段AM与DE的数量关系是 ;
(2)将图①中的等腰Rt绕点A沿逆时针方向旋转(0<<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
( http: / / www.21cnjy.com )
二、截长补短
例1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC
例2、如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP
应用:
( http: / / www.21cnjy.com )
三、借助角平分线造全等
例1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD
例2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.
应用:
1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直 ( http: / / www.21cnjy.com )角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;
(2)如图③,在△ABC中,如果∠ACB不 ( http: / / www.21cnjy.com )是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
四、旋转
例1、正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.
例2、D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。
当绕点D转动时,求证DE=DF。
若AB=2,求四边形DECF的面积。
例3、如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;
( http: / / www.21cnjy.com )
应用:
1、已知四边形中,,,,,,绕点旋转,它的两边分别交(或它们的延长线)于.
当绕点旋转到时(如图1),易证.
当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明.
2、(西城09年一模)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
3、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系.
( http: / / www.21cnjy.com )
图1 图2 图3
(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ;
(II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;
(III) 如图3,当M、N分别在边AB、CA的延长线上时,
若AN=,则Q= (用、L表示).
4、如图△ABC,请用不同的分法将△ABC的面积4等分,请你给出不同的方案?
O
P
A
M
N
E
B
C
D
F
A
C
E
F
B
D
图①
图②
图③
(图1)
(图2)
(图3)
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C