登陆21世纪教育 助您教考全无忧
3.3圆心角(2)
教学目标:
1. 经历探索圆心角定理的逆定理的过程;
2. 掌握”在同圆或等圆中,如果两个圆心角、两条弧、两条弦,两个圆心距中有一对量相等,那么它们所对应的其余各对量都相等”这个圆的性质;
3. 会运用关于圆心角,弧,弦,弦心距之间相互关系的定理解决简单的几何问题..
教学重点与难点:
教学重点: 关于圆心角,弧,弦,弦心距之间相互关系的性质
教学难点:例2(1)题,例3涉及四边形,圆等较多知识点,且思路不易形成,是本节的教学难点
教学过程:
1. 复习旧知,创设情景:
1. 圆具有哪些性质
2. 如图,已知:⊙O上有两点A、B,连结OA、OB,作∠AOB的角平分线交⊙O于点C,连结AC、BC.图中有哪些量是相等的
复习圆心角定理的内容.
3. 请写出圆心角定理的逆命题,并证明它们的正确性.
(1).逆命题 : 在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等,所对的弦的弦心距相等。
(2) 逆命题 : 在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等,弦的弦心距相等。
(3)逆命题 : 在同圆或等圆中,相等的弦心距对应弦相等,弦所对的圆心角相等,所对的弧相等。
结合图形说出已知和求证并给出简要的证明过程
由此引出新课.
2. 新课讲解
1、运用上面的结论来解决下面的问题:
已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:
(1)如果AB=CD,那么
_____________,________,____________。
(2)如果OE=OF,那么
_____________,________,____________。
(3)如果弧AB=弧CD 那么
______________,__________,____________。
(4)如果∠AOB=∠COD,那么
_________,________,_________。
2、上面的练习说明:
以下的四个量中只要有一个量相等,就可以得到
其余的量相等:
⑴∠AOB=∠COD⑵AB=CD
⑶OE=OF⑷弧AB=弧CD
3、一般地,圆有下面的性质
在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,那么它们所对应的其余的各组量都相等。
4.例题讲解:
例2:如图,等边三角形ABC内接于⊙O,连结OA,OB,OC.
⑴ ∠AOB 、∠COB、 ∠AOC分别为多少度?
⑵延长AO,分别交BC于点P,弧BC于点D,连结BD,CD.
判断三角形OBD是哪一种特殊三角形?
⑶判断四边形BDCO是哪一种特殊四边形,并说明理由。
⑷若⊙O的半径为r,求等边ABC三角形的边长?
⑸若等边三角形ABC的边长r,求⊙O的半径为 多少?
当r = 时求圆的半径
第(1)小题要适当启发:由等边三角形ABC入手,得出∠AOB=∠BOC=∠COA=120°, 从而得出 ∠BOD=∠COD=60°。
例3:⑴如图,顺次连结⊙O的两条直径AC和BD的端点,所得的四边形是什么特殊四边形?
⑵如果要把直径为30cm的圆柱形原木锯成一根横截面为正方形的木材,并使截面尽可能地大,应怎样锯?最大横截面面积是多少?
如果这根原木长15m,问锯出地木材地体积为多少立方米(树皮等损耗略去不计)?
分析:教学中应抓好以下几个环节(1)怎样才能使截面尽可能大 应当使截面的各个顶点在圆上,这里用的是合情推理.(2)怎样能使截面成为一个内接于圆0的正方形 引导学生回顾第一问的解答,并问在什么条件矩形就成为正方形.
3. 巩固新知:
P73课内练习1,2
四.小结: 通过这节课的学习,你学到了什么知识?
1.圆的性质在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,那么它们所对应的其余的各组量都相等。
2.运用关于圆心角,弧,弦,弦心距之间相互关系的定理解决简单的几何问题
五.布置作业:见作业本和课课通3.3-2
⌒
⌒
AB=CD
OE=OF
AB=CD
∠AOB=∠COD
O
C
B
A
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
3.2圆的轴对称性(1)
教学目标
1.使学生理解圆的轴对称性.
2.掌握垂径定理.
3.学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题.
教学重点
垂径定理是圆的轴对称性的重要体现,是今后解决有关计算、证明和作图问题的重要依据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用.
教学难点
垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比较,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点.
教学关键
理解圆的轴对称性.
教学环节的设计
这节课我通过七个环节来完成本节课的教学目标,它们是:
复习提问,创设情境;引入新课,揭示课题;讲解新课,探求新知;应用新知,体验成功;
目标训练,及时反馈;总结回顾,反思内化;布置作业,巩固新知.
一、复习提问,创设情境
1.教师演示:将一等腰三角形沿着底边上的高对折,启发学生共同回忆等腰三角形是轴对称图形,同时复习轴对称图形的概念;
2.提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?(教师用教具演示,学生自己操作)
二、引入新课,揭示课题
1.在第一个环节的基础上,引导学生归纳得出结论:
圆是轴对称图形,每一条直径所在的直线都是对称轴.
强调:
(1)对称轴是直线,不能说每一条直径都是它的对称轴;
(2)圆的对称轴有无数条.
判断:任意一条直径都是圆的对称轴( )
设计意图:让学生更好的理解圆的轴对称轴新性,为下一环节探究新知作好准备.
三、讲解新课,探求新知
先按课本进行合作学习
1.任意作一个圆和这个圆的任意一条直径CD;
2.作一条和直径CD的垂线的弦,AB与CD相交于点E.
提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?
在学生探索的基础上,得出结论:(先介绍弧相等的概念)
①EA=EB;② AC=BC,AD=BD.
理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,
∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合.
∴ EA=EB, AC=BC,AD=BD.
思考:你能利用等腰三角形的性质,说明OA平分CD吗?(课内练习1)
注:老教材这个内容放在圆心角、圆周角之后,垂径定理完全可以不用圆的轴对称性来证,可用等腰三角形的性质来证明,现在只能证前面一个(略).
然后把此结论归纳成命题的形式:
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
垂径定理的几何语言
∵CD为直径,CD⊥AB(OC⊥AB)
∴ EA=EB, AC=BC,AD=BD.
四、应用新知,体验成功
例1 已知AB,如图,用直尺和圆规求作这条弧的中点.(先介绍弧中点概念)
作法:
⒈连结AB.
⒉作AB的垂直平分线 CD, 交弧AB于点E.
点E就是所求弧AB的中点.
变式一: 求弧AB的四等分点.
思路:先将弧AB平分,再用同样方法将弧AE、弧BE平分.
(图略)
有一位同学这样画,错在哪里?
1.作AB的垂直平分线CD
2.作AT、BT的垂直平分线EF、GH(图略)
教师强调:等分弧时一定要作弧所对的弦的垂直平分线.
变式二:你能确定弧AB的圆心吗?
方法:只要在圆弧上任意取三点,得到三条弦,画其中两条弦的垂直平分线,交点即为圆弧的圆心.
例2 一条排水管的截面如图所示.排水管的半径OB=10,水面宽AB=16,求截面圆心O到水面的距离OC .
思路:
先作出圆心O到水面的距离OC,即画 OC⊥AB,∴AC=BC=8,
在Rt△OCB中,
∴圆心O到水面的距离OC为6.
例3 已知:如图,线段AB与⊙O交于C、D两点,且OA=OB .求证:AC=BD .
思路:
作OM⊥AB,垂足为M, ∴CM=DM
∵OA=OB , ∴AM=BM , ∴AC=BD.
概念:圆心到圆的一条弦的距离叫做弦心距.
小结:
1.画弦心距是圆中常见的辅助线;
2.半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长.
注:弦长、半径、弦心距三个量中已知两个,就可以求出第三个.
五、目标训练,及时反馈
1.已知⊙0的半径为13,一条弦的AB的弦心距为5,则这条弦的弦长等于 .
答案:24
2.如图,AB是⊙0的中直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
A.∠COE=∠DOE B.CE=DE C.OE=BE D.BD=BC
3.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )
A.3 B.6cm C. cm D.9cm
答案:A
注:圆内过定点M的弦中,最长的弦是过定点M的直径,最短的弦是过定点M与OM垂直的弦,此结论最好让学生记住,课本作业题也有类似的题目.
4.如图,⊙O的直径为10,弦AB长为8,M是弦AB上的动点,则OM的长的取值范围是( )
A.3≤OM≤5 B.4≤OM≤5 C.35. 已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为 .
答案:2或24
注:要分两种情况讨论:(1)弦AB、CD在圆心O的两侧;(2)弦AB、CD在圆心O的同侧.
6.如图,已知AB、AC为弦,OM⊥AB于点M, ON⊥AC于点N ,BC=4,求MN的长.
思路:由垂径定理可得M、N分别是AB、AC的中点,
所以MN=BC=2.
六、总结回顾,反思内化
师生共同总结:
1.本节课主要内容:(1)圆的轴对称性;(2)垂径定理.
2.垂径定理的应用:(1)作图;(2)计算和证明.
3.解题的主要方法:
(1)画弦心距是圆中常见的辅助线;
(2)半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长.
七、布置作业, 巩固新知
P75作业题1~6,第7题选做.
D
C
B
A
O
E
⌒
⌒
⌒
⌒
⌒
⌒
⌒
⌒
A
B
C
D
O
E
⌒
⌒
⌒
⌒
⌒
⌒
⌒
O
A
B
C
⌒
⌒
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 5 页)登陆21世纪教育 助您教考全无忧
4.1比例线段(3)
教学目标:
1.了解比例中项的概念。
2.会求已知线段的比例中项(了解与数的比例中项的区别)。
3.通过实例了解黄金分割。
4.利用黄金分割进行简单的计算和作图.
教学重点、难点:
教学重点:黄金分割的概念及其简单应用。
教学难点:例5的作图涉及到线段的倍分关系与和差关系,比较复杂,是本节教学的难点。
知识要点:
1.如果三个数a、b、c满足比例式=(或a:b=b: c),则b叫做a,c的比例中项。
2. =<=>b2=ac。
3.如图4-1-4,如果点P把线段AB分成两条线段AP和PB,使=,那么称线段AB被点P黄金分割,点P叫做线段AB的黄金分割点,线段AP与AB的比叫做黄金比.
重要方法:
1.判断b是a、c的比例中项,只要=或b2=ac成立。
2.记住线段AB被点P黄金分割原理;记住黄金比: EQ \F(-1,2) ≈0.618.
3.利用黄金分割原理解释自然界中的生活现象.
4.黄金三角形:顶角为36°的等腰三角形的底与腰的比等于黄金比;顶角为108°的等腰三角形的腰与底的比等于黄金比.(宽与长的比等于黄金比的矩形是黄金矩形)
教学过程:
一、创设情景,引入新课
感受匀称、协调之美
如:蒙娜丽莎像、芭蕾舞演员的演姿、上海东方明珠塔、五角星等,感受黄金分割图像之美。
二、合作学习,探索新知
1.线段的比例中项
(1)取一张长与宽之比为∶1的长方形纸(怎么取?协作学习)
(2)将它(上述矩形)对折.请判断图4-4中的两张长方形纸的长与宽这4条线段是否成比例.如果成比例,请写出比例式.这个比例式有什么特别之处吗?(与同伴交流)
= EQ \F(,1) ,= EQ \F(b, EQ \F(,2) b) = EQ \F(,1)
∴=,这个比例式的内项相同.
定义:一般地,如果三个数a、b、c满足比例式=(或a:b=b: c),则b叫做a,c的比例中项.
=<=>b2=ac。
做一做:
P1011、(1)1是不是1和的比例中项;(2)1和的比例中项是什么?
P1012、求线段a、b的比例中项.
(1)a=3,b=27; (2)a=,b=3; (3)a= EQ \F(-1,2) ,b= EQ \F(+1,2)
2.黄金分割
(1)五角星是我们常见的图形.在图4-4中,度量点C到点A,B的距离
与相等吗?
点C把线段AB分成两条线段AC和BC,如果=,
那么称线段AB被点C黄金分割(golden section),
点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
问题:一条线段有几个黄金分割点?一颗五角星中有几个黄金分割点?
(2)求出黄金比的数值,如图4-1-4
设=x,则PB=AB-AP=AB-AB x.
由=,得=,即=
化简,得x2+x-1=0.
解得x1= EQ \F(-1+,2) ,x2= EQ \F(-1-,2) (不合题意,舍去)
所以= EQ \F(-1,2) ≈0.618
(3)黄金分割的深远意义
历史上,人们视黄金分割为“最美丽”的几何比率,广泛应用于建筑和雕刻中,如古代希腊的帕特农神庙、埃及金字塔、上海东方明珠塔等,一些长方形的画框,宽与长之比也设计成0.618,在自然界中也有很多例子,美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.许多美丽的形状都与0.618这个比值有关。
(4)尺规做线段的黄金分割点
例5,已知线段AB=a,用直尺和圆规作出它的黄金分割点。
分析:线段a的黄金分割所得的较长线段长应是 EQ \F(-1,2) a,
= EQ \F(,2) a-a,由于 EQ \F(,2) a是以a和a为直角边的斜边长
因此本题转化为作两条线段之差.
作法:
1.经过点B作BD⊥AB,使BD=AB
2.连接AD,在AD上截取DE=DB.
3.在AB上截取AC=AE.
如图,点C就是线段a的黄金分割点
思考:
1.如果设AB=1,那么BD,AD,AC,BC分别等于多少
2.计算 与
3.点C是线段AB的黄金分割点吗
课内练习:P1021、2
P102~103作业题1、2、3、4、5、6
三、课堂小结
1.比例中项的概念,
2.线段的比例中项与数的比例中项的区别;
3.黄金分割,黄金分割点,黄金比的概念.
四、作业:见作业本
五、教后感
EMBED Flash.Movie
A
C
B
图4-5
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
1.1 反比例函数(1)
教学目标:
1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.
2. 能根据实际问题中的条件确定反比例函数的关系式.
3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体
会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.
教学重点:反比例函数的概念
教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学过程:
随着速度的变化,全程所用时间发生怎样的变化?
一、 创设情景 探究问题
v/(km/h) 60 80 90 100 120
t/h
情境1:
当路程一定时,速度与时间成什么关系?(s=vt)
当一个长方形面积一定时,长与宽成什么关系
[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:
汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.
问题:
(1)你能用含有v的代数式表示t吗?
(2)利用(1)的关系式完成下表:
(3)速度v是时间t的函数吗?为什么?
[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).
(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.
3)结合函数的概念,特别强调唯一性,引导讨论问题(3).
情境3:
用函数关系式表示下列问题中两个变量之间的关系:
(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;
(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;
(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;
(4)实数m与n的积为-200,m随n的变化而变化.
问题:
(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?
(2)它们有一些什么特征?
(3)你能归纳出反比例函数的概念吗?
一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.
反比例函数的自变量x的取值范围是不等于0的一切实数.
[说明]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.
二、例题教学
例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?
(1)y=;(2)y=;(3)y=- ;(4)y=-3;(5)y=;(6)y=+2;(7)y=.
[说明]这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y=或y=kx+b的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x-1,不是x,(2)式y与x-1成反比例,它不是y与x的反比例函数. 对于(4),等号右边不能化成 的形式,它只能转化为的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x,看上去和(2)类似,但它可以化成,即k=-,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.
例2:在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有 个.
[说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1)与x成反比例.
例3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为 .
[说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.
三、拓展练习
1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.
(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;
(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;
(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.
2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少?
(1)y=x; (2)y=; (3)xy+2=0;
(4)xy=0; (5)x=.
3、已知函数y=(m+1)x是反比例函数,则m的值为 .
[说明]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.
第3题要引导学生从反比例函数的变式y=kx-1入手,注意隐含条件k≠0,求出m值.
四、课堂小结
这节课你学到了什么?还有那些困惑?
五、布置作业:
作业本(1)第一页
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
3.2圆的轴对称性(2)
教学目标
1.使学生掌握垂径定理及其推论,并会用垂径定理及其推论解决有关证明、计算和作图问题;
2.使学生了解垂径定理及其推论在实际中的应用,培养学生把实际问题转化为数学问题的能力和计算能力,结合应用问题向学生进行爱国主义教育.
教学重点和难点
垂径定理的两个推论是重点;由定理推出推论1是难点.
教学过程设计
一、从学生原有的认知结构提出问题
1.画图叙述垂径定理,并说出定理的题设和结论.(由学生叙述)
2.结合图形7-35,教师引导学生写出垂径定理的下述形式:
题设 结论
线CD平分弦AB
指出:垂径定理是由两个条件推出三个结论,即由①②推出③④⑤.提问:如果把题设和结论中的5条适当互换,情况又会怎样呢 引出垂径定理推论的课题 二、运用逆向思维方法探讨垂径定理的推论
1.引导学生观察图形,选①③为题设,可得:
由于一个圆的任意两条直径总是互相平分的,但是它们不一定是互相垂直的,所以要使上面的题设能够推出上面的结论,还必须加上“弦AB不是直径”这一条件.
这个命题是否为真命题,需要证明,结合图形请同学叙述已知、求证,教师在黑板上写出.
已知:如图7-36,在⊙O中,直径CD与弦AB(不是直径)相交于E,且E是AB的中点.
求证:CD⊥AB,.
分析:要证明CD⊥AB,即证OE⊥AB,而E是AB的中点,即证OE为AB的中垂线.由等腰三角形的性质可证之.利用垂径定理可知AC=BC,AD=BD.
证明:连结OA,OB,则OA=OB,△AOB为等腰三角形.
因为E是AB中点,所以OE⊥AB,即CD⊥AB,
又因为CD是直径,所以
2. 若选①④为题设,可得:
以上命题用投影打出,引导学生自己证出?
3.根据上面具体的分析,在感性认识的基础上,引导学生用文字叙述其中最常用的二个命题,教师板书出垂径定理的推论1.
推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2) 平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧.
三、应用举例,变式练习
例1 平分已知.
引导学生画图,写已知、求作.
已知: (图7-38),求作:的中点.
分析:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.因此,连结AB,作弦AB的垂直平分线,它一定平分.
作法:(由学生口述,教师板书,师生共同作图)
练习1 四等分已知.
引导学生在平分的基础上,进一步平分AM和BM,即可四等分AB.
作图后,提问:四等分弦AB是否可四等分,为什么 如图7-39所示.
在学生回答的基础上,强调:这种作法是错误的,虽然在等分时作法是对的,但是在等分和时是错误的,因为AT,BT不是和所对的弦.因此AT,BT的垂直平分线不能平分和,请同学们务必注意.
练习2 按图7-40,填空:在⊙O中
(1)若MN⊥AB,MN为直径;则 , , ;
(2)若AC=BC,MN为直径;AB不是直径,则 , , ;
(3)若MN⊥AB,AC=BC,则 , , ;
(4)若=,MN为直径,则 , , .
此练习的目的是为了帮助学生掌握垂径定理及推论1的条件和结论.
例2 1300多年前,我国隋代建造的赵州石拱桥(图7-41)的桥拱是圆弧形,它的跨度(弧
所对的弦的长)为37.4米,拱高(弧的中点到弧的距离,也叫弓形高)为7.2米,求桥拱的半径.(精确到0.1米)
首先可借此题向学生介绍“赵州桥”,对学生进行爱国主义教育,同
时也可激发学生学习数学的兴趣.
关于赵州桥的说明:
赵州桥又名“安济桥”,位于河北省赵县城南交河上,是我国现存的著名古代大石拱桥、
?隋开皇大业年间(590~608)由李春创建.桥单孔,全长50.82米,桥面宽约10米,跨径约
为37米,弧形平缓,拱圈为28条并列的石条组成,上设四个小拱,既减轻重量,节省材料,
又便于排洪,且增美观?在世界桥梁史上,其设计与工艺之新为石拱桥的卓越典范,跨度之
大在当时亦属首创,反映了我国古代劳动人民的智慧与才能.
分析:(1)首先说明跨度、拱高等概念,然后引导学生设法把实际问题转化为数学问题
,并画出几何图形(图7-42),且一边画图一边解释:桥拱是圆弧形,以O为圆心,R为半径画
出一段圆弧表示桥拱,弦AB表示桥的跨度,即AB=37.4米,的中点C到线段AB的距离为.2米.
这样我们就可以根据实际问题,参照上图写出数学问题的已知和求解.
(2)实际问题已转化为数学问题,下面讨论如何解决这个问题.
启发学生观察图形、发现:对于,如果经过圆心O作弦AB的垂线OD,D为垂足,并延长交于点C,那么根据垂径定理可知,OD平分弦,OC平分弧,即C点为AB的中点,CD就是
拱高,这样做出的图形符合题意.
根据勾股定理,在Rt△AOD中就可求出半径R. 解题过程,参考课本. 对于此题,学生往往是过的中点C先作出弓形高CD,即过C作CD⊥AB,垂足为D,如果是这样的话,可引导学生根据垂径定理,首先证明直线CD经过圆心O,仍然可利用勾股定理,求出半径R.
说明:此题的解题思路是,经过圆心作弦的垂线,说明它平分弦且平分弦所对的弧?也
可以经过弧的中点作弦的垂线,说明它平分弦且经过圆心.解决这类问题时,只要抓住弦长
、弦心距、弓形高及半径之间的关系,已知其中的两个量,可以求出其它两个未知量,这种
思考方法今后要经常用到.
例3 已知;如图7-43,⊙O半径为6厘米,弦AB与半径OA的夹角为30°. 求:弦AB的长.
分析:已知圆的半径和半径与弦的夹角.要求弦长,只要利用圆的半径、弦长、圆心到
弦的距离之间的关系即可.过圆心O作AB的垂线段OD,解Rt△AOD,求出AD即可求得AB.
解:作OD⊥AB于D,则AD=DB,
在Rt△AOD中,因为∠DAO=30°
练习3 如图7-44(厘米)
在直径为650毫米的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600毫米,求油的最大深度.
通过此练习题,进一步培养学生把实际问题转化为数学问题的能力.再一次明确弦长a、弦心距d、半径r及弓形高h之间的关系.(图7-45)
四、师生共同小结
问:这节课我们学习了哪些主要内容
在学生回答的基础上,用投影出示垂径定理及其推论的基本图形,如图7-46.
指出:若垂径定理或推论中的某一个成立,则
(1) △CAB,△OAB,△DAB都是等腰三角形,弦AB是它们公共的底边,直径CD是它
们的顶角平分线和底边的垂直平分线.
(2) △ACD和△BCD是全等的直角三角形,直径CD是它们公共的斜边,AE,BE分别是斜边
(2)上的高,AO,BO分别是斜边上的中线?在这两个三角形中可以运用直角三角形的一系列性质.
(3
通过应用题的学习,培养把实际问题抽象成数学问题的意识,从而提高转化能力和计算能力.
六、布置作业:见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 7 页)登陆21世纪教育 助您教考全无忧
3.5弧长及扇形的面积(2)
教学目标:1、经历探索扇形面积计算公式的过程;
2、掌握扇形面积的计算公式,并会应用公式解决问题。
教学重点:扇形面积的计算公式。
教学难点:例4涉及弓形面积的计算和流量与流速关系等实际背景,较为复杂。
教学设计:
一、复习圆面积
已知⊙O半径为R,⊙O的面积S是多少?(S=πR2)
我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.
扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.
提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.
二、探究问题、归纳结论
1、探究问题
教师组织学生对比研究:
(1)圆面积S=πR2;
(2)圆心角为1°的扇形的面积= ;
(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(4)圆心角为n°的扇形的面积= .
2、归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
S扇形= (扇形面积公式)
(三)理解公式
教师引导学生理解:
(1)在应用扇形的面积公式S扇形= 进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)
S扇形= lR
想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)
与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.
(四)应用
(一)练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇=____.
2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.
3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.
4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.
5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=____.
小结:由上面练习题可知:在弧长、圆心角、半径、扇形面积四个量中只要知道其中的两个量就可以求出另外的两个量,但必须要知道圆的半径。
(二)例题
例3、如图,有一把折扇和一把团扇。已知折扇的骨柄与团扇的直径一样长,折扇扇面的宽度是骨柄长的一半,折扇张开的角度为120 °,问哪一把扇子扇面的面积大?
分析:折扇扇面的面积没有直接的公式可用,应该咋办?(转化为两个扇形的面积之差来计算。
例4、我国著名的引水工程的主干线输水管的直径为2.5m,设计流量为12.73m3 /s.如果水管截面中水面面积如图所示,其中∠AOB=45°,那么水的流速因达到多少m/s.
分析:(1)水的流速与水的流量、截面中水面的面积有什么关系?
(2) 截面中水面的面积即圆的面积与空隙部分弓形面积之差。
(3)弓形面积为扇形AOB与三角形AOB的差。
(三)课堂练习:课本第86页第4题.
五、总结
1、知识:扇形及扇形面积公式S扇形= ,S扇形= lR.
2、方法能力:迁移能力,对比方法;计算能力的培养.
六、作业 见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
2.3二次函数的性质(2)
教学目标:
1、掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式。
2、能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性。
3、能根据二次函数的解析式画出函数的图像,并能从图像上观察出函数的一些性质。
教学重点:二次函数的解析式和利用函数的图像观察性质
教学难点:利用图像观察性质
教学设计:
一、复习
1、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_____0时, y随着x的增大而增大; 在 侧,即x_____0时, y随着x的增大而减小;当x= 时,函数y最 值是____。
2、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_____0时, y随着x的增大而增大; 在 侧,即x_____0时,y随着x的增大而减小;当x= 时,函数y最 值是____。
二、例题讲解
例1、根据下列条件求二次函数的解析式:
(1)函数图像经过点A(-3,0),B(1,0),C(0,-2)
(2) 函数图像的顶点坐标是(2,4)且经过点(0,1)
(3)函数图像的对称轴是直线x=3,且图像经过点(1,0)和(5,0)
说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件。一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷。
例2 已知函数y= x2 -2x -3 ,
(1)把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的?
(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;
(3)求出图象与坐标轴的交点坐标;
(4)画出函数图象的草图;
(5)设图像交x轴于A、B两点,交y 轴于P点,求△APB的面积;
(6)根据图象草图,说出 x取哪些值时, ① y=0; ② y<0; ③ y>0.
说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;
(2)利用函数图像判定函数值何时为正,何时为负,同样也要充分利用图像,要使y<0;,其对应的图像应在x轴的下方,自变量x就有相应的取值范围。
例3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:
a 0; b 0;c 0; 0。
说明:二次函数y=ax2+bx+c(a≠0)的图像与系数a、b、c、的关系 :
系数的符号 图像特征
a的符号 a>0. 抛物线开口向
a<0 抛物线开口向
b的符号 b>0. 抛物线对称轴在y 轴的 侧
b=0 抛物线对称轴是 轴
b<0 抛物线对称轴在y 轴的 侧
c的符号 c>0. 抛物线与y轴交于
C=0 抛物线与y轴交于
c<0 抛物线与y轴交于
的符号 >0. 抛物线与x 轴有 个交点
=0 抛物线与x 轴有 个交点
<0 抛物线与x 轴有 个交点
三、小结本节课你学到了什么?
四、布置作业:课本作业题第5、6题
补充作业题:已知二次函数的图像如图所示,下列结论:
⑴a+b+c﹤0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a
其中正确的结论的个数是( )A 1个 B 2个 C 3个 D 4个
y
1
-1
x
o
x
y
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
课题:二次函数复习讲义
1.抛物线的形状、开口方向与y=x2-4x+3相同,顶点在(-2,1),则关系式为( )
A.y=(x-2)2+1 B.y= (x+2)2-1; C.y= (x+2)2+1 D.y=- (x+2)2+1
2.若直线y=ax+b(ab≠0)不过第三象限,则抛物线y=ax2+bx的顶点所在的象限是( )
A.一 B.二 C.三 D.四
3.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )
A.m≥; B.m>; C.m≤; D.m<
4.二次函数y=m2x2-4x+1有最小值-3,则m等于( )
A.1 B.-1 C.±1 D.±
5.函数y=ax2+bx+c中,若ac<0,则它的图象与x轴的位置关系为( )
A.无交点 B.有1个交点; C.有两个交点 D.不确定
6.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式为( )
A.y=3(x-2)2+1 B.y=3(x+2)2-1 C.y=3(x-2)2-1 D.y=3(x+2)2+1
7.二次函数y=ax2+bx+c的图象如图所示,下列五个代数式
ab、ac、a-b+c、b2- 4ac、
2a+b中,值大于0的个数为( )
A.5 B.4 C.3 D.2
8.二次函数y=ax2+bx+c与一次函数y=ax+c 在同一坐标系内
的图象可能是图所示的( )
9.已知二次函数y=x2-2mx+m-1的图象经过原点,与x轴的另一个交点为A, 抛物线的顶点为B,则△OAB的面积为
10.若抛物线y=x2+(m-1)x+(m+3)顶点在y轴上,则m=_______.
11.抛物线y=x2-5x+6与坐标轴交点是
12.抛物线y=ax2+12x-19顶点横坐标是3,则a=
13.抛物线y=x2-4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是_____.
14.已知抛物线y=x2+ax+a-2.
(1)证明:此抛物线与x轴总有两个不同的交点;
(2)求这两个交点间的距离(用关于a的表达式来表达);
(3)a取何值时,两点间的距离最小
15.已知函数y=x2-3x+.
(1)写出自变量x的取值范围;
(2)指出抛物线的开口方向;
(3)写出抛物线的顶点坐标,对称轴;
(4) 写出函数图象最高点或最低点的纵坐标;
(5) 函数图象与坐标轴交点的坐标;
(6) x为何值时,y随x的增大而减小
(7)该抛物线可由什么图象经怎样平移得到?
(8)当x为何值时,y>0,y=0,y<0
(9)写出该抛物线关于x轴、y轴对称的抛物线的解析式?绕顶点旋转180°得到的抛物线的解析式。
(10)利用图象法求方程x2-3x+=0的近似解。
16.已知:m,n是方程x2-6x+5=0的两个实数根,且m(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D
,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H
点,若直线BC把△PCH分成面积之比为2:3的两部分,请求
出P点的坐标.
17.某跳水运动员进行10米跳台跳水训练,身体(将运动员看成一点)在空中运动的路线是如图所示坐标系经过原点O的抛物线(图中标出的数据为已知数据).在跳某个规定动作时,正常情况下,该运动员在空中最高处距水面10米,入水处距池边4米.同时,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.
(1)求这条抛物线的关系式;
(2)某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时距池边的水平距离为3米,问此次跳水会不会失误 通过计算说明理由.
18.某广告公司要为客户设计一幅周长为12m的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
4.3相似三角形的判定(1)
教学目标:
1.经历“有两个角对应相等的两个三角形相似”的探索过程.
2.能运用“有两个角对应相等”的条件判定两个三角形相似.
重点和难点:
1.本节教学的重点是相似三角形的判定方法:有两个角对应相等的两个三角形相似.
2.有两个角相等的三角形是相似三角形的探索过程比较复杂,是本节教学的难点.
知识要点:
1、有两个角对应相等的两个三角形相似.
如图,∵∠A=∠A′,∠B=∠B′
∴△ABC∽△A′B′C′
2、基本图形
(1)如图甲,若DE∥BC,则△ADE∽△ABC.
(2)如图乙,若AC∥DB,则△AOC∽△BOD.
3、常见图形
(1)如图1,若∠AED=∠B,则△ADE∽△ACB;
(2)如图2,若∠ACD=∠B,则△ACD∽△ABC;
(3)如图3,若∠BAC=90°,AD⊥BC,则△ABC∽△DBA∽△DAC.
重要方法:
1、有一个锐角相等的两个直角三角形相似;
2、识别三角形相似的常用思路:
(1)当条件中有平行线时,找两对对应角相等;
(2)当条件中有一对相等的角(对顶角或公共角)时,可考虑再找一对相等的角;
(3)两个等腰三角形,可以找顶角相等或找一对底角相等.
教学过程
一.创设情境,导入新课
1、如图,在方格图中△ABC,DE∥BC,问:△ADE∽△ABC吗?说明理由.
2、如图2,A、B、C、D、E、F、G都在小方格的的顶点上,问:DE∥BC∥FG吗?
△ADE∽△ABC∽△AFG?
二.合作学习,探索新知
1、合作学习:
如图4-14,在△ABC中,点D,E分别在AB,AC上,且DE∥BC.则△ADE与△ABC相似吗?
议一议:这两个三角形的三个内角是否相等?
量一量:这两个三角形的边长,它们是否对应成比例?
追问:若点D、E分别在AB、AC的反向延长线上,△ADE与△ABC是否还相似呢?
定理:平行于三角形一边的直线和其他两边(或它们的反向延长线)相交,所构成的三角形与原三角形相似.
定理的几何语言表述:
∵DE∥BC
∴△ADE∽△ABC
2、结合预备定理探求三角形相似的判定定理一
判定定理一:有两个角对应相等的两个三角形相似.
简称:两角对应相等,两三角形相似.
(由学生根据命题的题设和结论,写出已知求证)
已知:在△ABC 和△A′B′C′中, ∠A=∠A′,∠B=∠B′
求证:△ABC∽△A′B′C′
分析:要证两个三角形相似,
目前只有两个途径。一个是三角形相似的定义,(显然条件不具备);另一个是上面学习的利用平行线来判定三角形相似的定理。为了使用它,就必须创造具备定理的基本图形的条件。怎样创造呢?(即怎样把小的三角形移动到大的三角形上)
证明:在△A′B′C′的边A′B′、A′C′上,分别截取A′D=AB, A′E=AC,连结DE。
∵ A′D=AB,∠A=∠A′,A′E=AC
∴ ΔA′DE≌ΔABC,
∴ ∠A′DE=∠B,
又∵ ∠B′=∠B,
∴ ∠A′DE=∠B′,
∴ DE// B′C′
∴ ΔA′DE∽ΔA′B′C′
∴△ABC∽△A′B′C′
判定定理一的几何语言表述:在△ABC和△A′B′C′中
∵∠A=∠A′,∠B=∠B′
∴△ABC∽△A′B′C′
3、学以致用,体验成功
例1、已知:ΔABC和ΔDEF中, ∠A=40°,∠B=80°,∠E=80°, ∠F=60°.
求证:ΔABC∽ΔDEF
证明:∵ 在ΔABC中,∠A=40°,∠B=80°,
∴ ∠C=180°-∠A -∠B =180°-40° -80°=60°
∵ 在ΔDEF中,∠E=80°,∠F=60°
∴ ∠B=∠E,∠C=∠F
∴ ΔABC∽ΔDEF(两角对应相等,两三角形相似)
例2、一次数学活动课上,为了测量河宽AB,张杰采用了如下方法:从A处沿与AB垂直的直线方向走40m到达C处,插一根标杆,然后沿同方向继续走15m到达D处,再右转90°到E,使B,C,E三点恰好在一条直线上,量得DE=20m就可以求出河宽AB你算出结果(要求给出解题过程)
由学生口答过程,教师板书示范,并启发学生如何去分析问题,
解决问题.
例3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
已知:如图,在RtΔABC中,CD是斜边AB上的高。
求证:
ΔACD∽
ΔABC∽
ΔCBD
证明: ∵ ∠A=∠A,∠ADC=∠ACB=90°,
∴ ΔACD∽ΔABC(两角对应相等,两 三角形相似)
同理 ΔCBD ∽ ΔABC
∴ ΔABC∽ΔCBD∽ΔACD
此结论可以称为“母子相似定理”,今后可以直接使用.
三.巩固应用,拓展延伸
1、如图,在ΔABC中,AD、BE分别是BC、AC上的高,AD、BE相交于点F。
(1)求证:ΔAEF∽ΔADC;
(2)图中还有与ΔAEF相似的三角形吗?请一一写出 。
答:有ΔAEF∽ΔADC∽ΔBEC∽ΔBDF.
2、在ΔABC中 ,点D、E分别是边AB、AC上的点,连结DE,利用所学的知识讨论:当具备怎样的条件时,ΔADE与 ΔABC相似? (分两种情况讨论)
1、完成课本“课内练习”P1081、2
2.完成课本作业题P108~1091、2、3、4、5、6
五.归纳小结,反思提高
试谈谈通过本节课的学习,你有哪些收获与感想
六.布置作业:作业本
EMBED Flash.Movie
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 5 页)登陆21世纪教育 助您教考全无忧
2.2二次函数的图象(2)
教学目标:
1、经历二次函数图像平移的过程;理解函数图像平移的意义。
2、了解,,三类二次函数图像之间的关系。
3、会从图像的平移变换的角度认识型二次函数的图像特征。
教学重点:从图像的平移变换的角度认识型二次函数的图像特征。
教学难点:对于平移变换的理解和确定,学生较难理解。
教学设计:
一、 知识回顾
二次函数的图像和特征:
1、名称 ;2、顶点坐标 ;3、对称轴 ;
4、当时,抛物线的开口向 ,顶点是抛物线上的最 点,图像在x轴的 (除顶点外);当时,抛物线的开口向 ,顶点是抛物线上的最 点图像在x轴的 (除顶点外)。
二、合作学习
在同一坐标系中画出函数图像,的图像。
(1) 请比较这三个函数图像有什么共同特征?
(2) 顶点和对称轴有什么关系?
(3) 图像之间的位置能否通过适当的变换得到?
(4) 由此,你发现了什么?
三、探究二次函数和图像之间的关系
1、 结合学生所画图像,引导学生观察与的图像位置关系,直观得出的图像的图像。
教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系 ,如:
(0,0)(-2,0)
(2,2)(0,2);
(-2,2)(-4,2)
②也可以把这些对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。
2、 用同样的方法得出的图像的图像。
3、请你总结二次函数y=a(x+ m)2的图象和性质.
()的图像的图像。
函数的图像的顶点坐标是(-m,0),对称轴是直线x=-m
4、做一做
(1)、
抛物线 开口方向 对称轴 顶点坐标
y =2(x+3)2
y = -3(x-1)2
y = -4(x-3)2
(2)、填空:
①、由抛物线y=2x 向 平移 个单位可得到y= 2(x+1)2
②、函数y= -5(x -4)2的图象。可以由抛物线 向 平移 4 个单位而得到的。
3、对于二次函数,请回答下列问题:
①把函数的图像作怎样的平移变换,就能得到函数的图像?
②说出函数的图像的顶点坐标和对称轴。
第3题的解答作如下启发:这里的m是什么数?大于零还是小于零?应当把的图像向左平移还是向右平移?在此同时用平移的方法画出函数的大致图像(事先画好函数的图像),借助图像有学生回答问题。
五、 探究二次函数和图像之间的关系
1、在上面的平面直角坐标系中画出二次函数的图像。
首先引导学生观察比较与的图像关系,直观得出:的图像的图像。(结合多媒体演示)
再引导学生刚才得到的的图像与的图像之间的位置关系,由此得出:只要把抛物线先向左平移2个单位,在向上平移3个单位,就可得到函数的图像。
2、做一做:请填写下表:
函数解析式 图像的对称轴 图像的顶点坐标
3、 总结的图像和图像的关系
()的图像的图像的图像。
的图像的对称轴是直线x=-m,顶点坐标是(-m,k) 。
口诀:(m、k)正负左右上下移 ( m左加右减 k上加下减)
4、练习:课本第34页课内练习地1、2题
六、谈收获:
1、函数的图像和函数图像之间的关系。
2、函数的图像在开口方向、顶点坐标和对称轴等方面的性质。
七、布置作业
课本第35页作业题
预习题:对于函数,请回答下列问题:
(1)对于函数的图像可以由什么抛物线,经怎样平移得到的?
(2)函数图像的对称轴、顶点坐标各是什么?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
2.4二次函数的应用(3)
教学目标:
(1)会运用一元二次方程求二次函数的图象与x轴或平行于x轴的直线的交点坐标,并用来解决相关的实际问题。
(2)会用二次函数的图象求一元二次方程的解或近似解。
(3)进一步体验在问题解决的过程中函数与方程两种数学模式经常需要相互转换。
教学重点和难点:
重点:问题解决过程中二次函数与一元二次方程两种数学模型的转换。
难点:例4涉及较多的“科学”知识,解题思路不易形成,是本节教学的难点。
教学过程:
一、复习引入:
1.利用函数解决实际问题的基本思想方法?解题步骤?
“二次函数应用” 的思路
(1)理解问题;
(2)分析问题中的变量和常量,以及它们之间的关系;
(3)用数学的方式表示出它们之间的关系;
(4)做数学求解;
(5)检验结果的合理性,拓展等.
2.几个物理问题:
(1) 直线等加速运动
我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。那么直线等加速运动位移的公式是:
S=v0t+at2
就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。
我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关系。
t(秒) 0 1 2 3 4 5 6
S(米) 0 1.5 4 7.5 12 17.5 24
注意,这里的时间必须从开始等加速时开始计时,停止等加速时停止计时。t的取值范围,很明显是t≥0,而S的取值范围,同样是S≥0。下面我们来看看它的图象:
(2) 自由落体位移
我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为9.8米/秒,我们用g表示,但这个g不是9.8牛顿/千克。
自由落体位移的公式为:S=gt2
我们再来看看这个函数的表格:
t(秒) 0 1 2 3 4 5 6
S(米) 0 4.9 19.6 44.1 78.4 122.5 176.4
图象我们就不画了,它只是直线等加速运动的特殊情况,图象大同小异。
(3) 动能
现在我们来看另一方面的问题。我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。这是因为对方具有的动能随速度的增大而增大。
我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度(米/秒),那么计算物体动能的公式就是:E=mv2
来看一个表格(m=1千克):
v(米/秒) 0 1 2 3 4 5 6
E(焦耳) 0 0.5 2 4.5 8 12.5 18
v的取值范围显然是v≥0,E的取值范围也是E≥0,所以它的图象和前两个没什么区别。
通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。还有,物理学上用到的公式,一般很少有常数项。
现在我们反过来研究:物体运动某一路程或物体自由下落到某一高度所需的时间?
二、例题讲评
例4:一个球从地面上竖直向上弹起时的速度为10m/s,经过t(s)时求的高度为h(m)。已知物体竖直上抛运动中,h=v0t-gt2(v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s2)。问球从弹起至回到地面需多少时间?经多少时间球的高度达到3.75m
分析:根据已知条件,易求出函数解析式和画出函数图象。从图象可以看到图象与x轴交点横坐标0和2分别就是球从地面弹起后回到地面的时间,此时h=0,所以也是一元二次方程10t-5t2=0的两个根。这两个时间差即为所求。
同样,我们只要取h=3.75m,的一元二次方程10t-5t2=3.75,求出它的根,就得到球达到3.75m高度时所经过的时间。
结论:从上例我们看到,可以利用解一元二次方程求二次函数的图象与横轴(或平行于横轴的直线)的交点坐标。反过来,也可以利用二次函数的图象求一元二次方程的解。
例5利用二次函数的图象求方程x2+x-1=0的近似解。
分析:设y=x2+x-1,则方程的解就是该函数图象与x轴交点的横坐标。可以画出草图,求出近似解。
结论:我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标x1,x2就是一元二次方程ax2+bx+c=0(a≠0)的两个根。因此我们可以通过解方程ax2+bx+c=0来求抛物线y=ax2+bx+c与x轴交点的坐标;反过来,也可以由y=ax2+bx+c的图象来求一元二次方程ax2+bx+c=0的解。
两种方法:上述是一种方法;也可以求抛物线y=ax2与直线y=-bx-c的交点横坐标.
练习:P50课内练习、探究活动
补充练习:
1.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)。在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。
(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好人水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由
分析:挖掘已知条件,由已知条件和图形可以知道抛物线过(0,0)(2,-10),顶点的纵坐标为。
解:(1)如图,在给定的直角坐标系下,设最高点为A,入水点为B,抛物线的解析式为y=ax2+bx+c ,由题意知,O、B两点的坐标依次为(0,0)(2,-10),且顶点A的纵坐标为。
∴ ∴
∵抛物线对称轴在y轴右侧,∴>0,
又∵抛物线开口向下,∴a<0, b>0, ∴a=-,b=,c=0
∴抛物线的解析式为:y=-x2+x
(2)当运动员在空中距池边的水平距离为3时,即x=3-2=时,
y=(-)×()2+×=-, ∴此时运动员距水面高为:10-=<5,
因此,此次试跳会出现失误。
2(2006年宁波课改区).利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解。
(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法。
(2)已知函数y=x3的图象,求方程x3-x-2=0的解。(结果保留2个有效数字)
三、小结
1.利用函数解决实际问题的基本思想:
“二次函数应用” 的思路
(1)理解问题;
(2)分析问题中的变量和常量,以及它们之间的关系;
(3)用数学的方式表示出它们之间的关系;
(4)做数学求解;
(5)检验结果的合理性,拓展等.
2.利用解一元二次方程求二次函数的图象与横轴(或平行于横轴的直线)的交点坐标。反过来,也可以利用二次函数的图象求一元二次方程的解。
3. 二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标x1,x2就是一元二次方程ax2+bx+c=0(a≠0)的两个根。因此我们可以通过解方程ax2+bx+c=0来求抛物线y=ax2+bx+c与x轴交点的坐标;反过来,也可以由y=ax2+bx+c的图象来求一元二次方程ax2+bx+c=0的解。
两种方法:上述是一种方法;也可以求抛物线y=ax2与直线y=-bx-c的交点横坐标.
四、作业:见作业本。
O
t
S
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
2.3二次函数的性质(1)
教学目标:
1.从具体函数的图象中认识二次函数的基本性质.
2.了解二次函数与二次方程的相互关系.
3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性
教学重点:
二次函数的最大值,最小值及增减性的理解和求法.
教学难点:二次函数的性质的应用.
教学过程:
复习引入
二次函数: y=ax2 +bx + c (a 0)的图象是一条抛物线,它的开口由什么决定呢
补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.
二,新课教学:
1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标是 , 对称轴是 , 在 侧,即x_____0时, y随着x的增大而增大;在 侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0.
2. 探索填空::据上边已画好的函数图象填空: 抛物线y= 2x2的顶点坐标是 , 对称轴是 ,在 侧,即x_____0时, y随着x的增大而减少;在 侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0
3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质
(1).顶点坐标与对称轴
(2).位置与开口方向
(3).增减性与最值
当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值
4.探索二次函数与一元二次方程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
(1).每个图象与x轴有几个交点?
(2).一元二次方程x2+2x=0,x2-2x+1=0有几个根 验证一下一元二次方程x2-2x+2=0有根吗
(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系
归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况:
①有两个交点,
②有一个交点,
③没有交点.
当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
当b2-4ac﹥0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与 x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac﹤0时,抛物线与x轴没有交点。
举例: 求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。
结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。
即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是A( x1,0),B(x2,0)
5.例题教学:例1: 已知函数
⑴写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交点关于图象对称轴的对称点。然后画出函数图像的草图;
(2)自变量x在什么范围内时, y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值。
归纳:二次函数五点法的画法
三.巩固练习: 请完成课本练习:p42. 1,2
四.尝试提高:1
五.学习感想: 1、你能正确地说出二次函数的性质吗?
2、你能用“五点法”快速地画出二次函数的图象吗?你能利用函数图象回答有关性质吗?
六:作业:作业本,课本作业题1、2、3、4。
x
y
y= 2x2
0
y= -2x2
0
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
1.1 反比例函数(2)
教学目标:
1.会用待定系数法求反比例函数的解析式.
2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.
3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.
重点: 用待定系数法求反比例函数的解析式.
难点:例3要用科学知识,又要用不等式的知识,学生不易理解.
教学过程:
1. 复习
1、反比例函数的定义:
判断下列说法是否正确(对”√”,错”×”)
2、思考:如何确定反比例函数的解析式
(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______
(2)当m为何值时,函数 是反比例函数,并求出其函数解析式.
关键是确定比例系数!
二.新课
1. 例2:已知变量y与x成反比例,且当x=2时y=9(1)写出y与x之间的函数解析式和自变量的取值范围。
小结:要确定一个反比例函数的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数。
2.练习:已知y是关于x 的反比例函数,当x=时,y=2,求这个函数的解析式和自变量的取值范围。
3.说一说它们的求法:
(1)已知变量y与x-5成反比例,且当x=2时 y=9,写出y与x之间的函数解析式.
(2)已知变量y-1与x成反比例,且当x=2时 y=9,写出y与x之间的函数解析式.
4. 例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。
(1)已知一个汽车前灯的电阻为30 Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30 Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
三.巩固练习:
1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
四.拓展:
1.已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:
(1)Y关于x的函数解析式;
(2)当z=-1时,x,y的值.
2.
五.交流反思
求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的由欧姆定律得到。
六、布置作业:作业本(2)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
1.3反比例函数的应用(2)
教学目标:
1、经历分析实际问题中变量之间的关系建立反比例函数模型,进而解决实际问题的过程
2、体会数学与现实生活的紧密性,培养学生的情感、态度,增强应用意识,体会数形结合的数学思想。
3、培养学生自由学习、运用代数方法解决实际问题的能力。
教学重难点:
重点是运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。
难点是例2中变量的反比例函数关系的确定建立在对实验数据进行有效的分析、整合的基础之上,过程较为复杂。
教学设计:
一、 创设情境 、引入新课
如图,在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积和气体对气缸壁所产生的压强。
(1) 请根据表中的数据求出压强p(kpa)关于体积V(ml)函数解析式。
(2) 当压力表读出的压强为72 kpa时,气缸内的气体压缩到多少ml?
体积V(ml) 压强p(kpa)
100 60
90 67
80 75
70 86
60 100
分析:(1)对于表中的实验数据你将作怎样的分析、处理?
(2)能否用图像描述体积V与压强p的对应值?
(3)猜想压强p 与体积V之间的函数类别?
师生一起解答此题。并引导学生归纳此种数学建模的方法与步骤:
(1)由实验获得数据
(2)用描点法画出图像
(3)根据图像和数据判断或估计函数的类别
(4)用待定系数法求出函数解析式
(5)用实验数据验证
指出:由于测量数据不完全准确等原因,这样求得的反比例函数的解析式可能只是近似地刻画了两个变量之间的关系。
二、巩固练习
课本第20页第5题
三、作业:作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
1.2反比例函数的图像和性质(2)
教学目标:
1、巩固反比例函数图像和性质,通过对图像的分析,进一步探究反比例函数的增减性。
2、掌握反比例函数的增减性,能运用反比例函数的性质解决一些简单的实际问题。
教学重点:
通过对反比例函数图像的分析,探究反比例函数的增减性。
教学难点:
由于受小学反比例关系增减性知识的负迁移,又由于反比例函数图像分成两条分支,给研究函数的增减性带来复杂性。
教学设计:
一、复习:
1.反比例函数 的图象经过点(-1,2),那么这个反比例函数的解析式为 ,图象在第 象限,它的图象关于 成中心对称.
2.反比例函数 的图象与正比例函数 的图象,交于点A(1,m),则m= ,反比例函数的解析式为 ,这两个图象的另一个交点坐标是 .
3、画出函数的图像
二、讲授新课
1、引导学生观察函数的表格和图像说出y 与x之间的变化关系;
(1)
X … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y … -1 -1.2 -1.5 -2 -3 -6 6 3 2 1.5 1.2 1 …
(2)
X … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y … 1 1.2 1.5 2 3 6 -6 -3 -2 -1.5 1.2 -1 …
2、做一做:
1.用“>”或“<”填空:
(1)已知 和 是反比例函数 的两对自变
量与函数的对应值.若 ,则 .
(2)已知和是反比例函数 的两对自变
量与函数的对应值.若 ,则 .
2.已知( ),( ),( )是反比例函数
的图象上的三个点,并且 ,则
的大小关系是( )
(A) (B)
(C) (D)
3.已知( ),( ),( )是反比例函数 的图象上的三个点,则 的大小关系是 .
4.已知反比例函数 .(1)当x>5时,0 y 1;
(2)当x≤5时,则y 1,或y< (3)当y>5时,x的范围是 。
3、讲解例题
例 下图是浙江省境内杭甬铁路的里程示意图。设从杭州到余姚一段铁路线上的列车行驶的时间为 时,平均速度为 千米/时,且平均速度限定为不超过160千米/时。
(1)求v 关于t 的函数解析式和自变量t的取值范围;
(2)画出所求函数的图象
(3)从杭州开出一列火车,在40分内(包括40分)到达余姚 可能吗?在50分内(包括50分)呢?如有可能,那么此时对列车的行驶速度有什么要求?
小结:(1)自变量t不仅要符合反比例函数自身的式子有意义,而且要符合实际问题中的具体意义及附加条件。
(2)对于在自变量的取值范围内画函数的图像映注意图像的纯粹性。
(3)一般有;两种方法求自变量的取值范围:一是利用函数的增减性,二是利用图解法。
练习:课本第16页课内练习第3题
三、 小结:
本节课我学到了…… 我的困惑……
四、比较正比例函数和反比例函数的性质
正比例函数 反比例函数
解析式
图像 直线 双曲线
位置 k>0,一、三象限;k<0,二、四象限 k>0,一、三象限k<0,二、四象限
增减性 k>0,y随x的增大而增大k<0,y随x的增大而减小 k>0,在每个象限y随x的增大而减小k<0,在每个象限y随x的增大而增大
五、布置作业:见作业本
48
29
31
39
21
宁波
余姚
上虞
绍兴
萧山
杭州
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
3.6圆锥的侧面积和全面积
教学目标:1、经历圆锥的侧面积计算公式的探索过程;
2、掌握圆锥的侧面积计算公式,会利用公式进行计算,并会解决实际问题;
3、让学生观察将圆锥的曲面展开在一个平面上的图形。回顾圆锥及其侧面积展开图之间的关系。
教学重点:圆锥侧面积的计算及计算公式
教学难点:圆锥侧面积计算公式的推导过程需要较强的空间想象能力。
教学设计:
[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]
前面屏幕上展示的物体都是什么几何体?
在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?
答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。
[教师边演示模型,边启发提问]:
1. 给一圆锥,如何找到它的母线?圆锥的母线应具有什么性质?
2. 现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,
这个展开图是什么图形?
3.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?
4.扇形的半径其实是圆锥的什么线段?
[扇形的弧长是底面圆的周长,即 ,扇形的半径。就是圆锥的母线]
由于 ,圆锥半径已知则展开图扇形的弧长已知,圆锥母线已知则展开图
扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.
例1: 圆锥形的烟囱帽的底面直径是80cm,母线长50cm,
计算烟囱帽侧面积.(取3.14,结果保留2个有效数字)
分析:此题直接根据公式,注意最后的答案要根据预定的精确度,用科学记数法写成含两个有效数字的表示形式)
练习:
1.如果圆锥底面半径为4cm,它的侧面积为 ,那么圆锥的母线长为_________.
2.圆锥的底面半径为2 cm,高为cm,则这个圆锥表面积_____________
3一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个
圆锥的底面半径为_________________
4.圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是__________
例2、已知一个圆锥的轴截面△ABC是等边三角形,它的表面积为75cm2,求这个圆锥的底面半径和母线的长。
分析:求有关底面半径、母线长、高往往要在直角三角形中
利用勾股定理求得,但此题中只知道表面积所以考虑用方程的思想。
练习:课本作业题的1、2、3
小结:请同学们回顾一下,本堂课我们学了些什么知识?
作业:见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
第一章反比例函数复习
教学目标:
1、通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律
2、结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题
3、让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力。
教学重点:反比例函数的图像和性质在实际问题中的运用。
教学难点:运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法。
教学过程:
一、 知识回顾
1、什么是反比例函数?
2、你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流。
二、练一练
1 、 反比例函数y=-的图象是 ,分布在第 象限,在每个象限内, y都随x的增大而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x13、已知反比例函数 ,若X1 4、如图在坐标系中,直线y=x+ k与双曲线 在第一象限交与点A, 与x轴交于点C,AB垂直x轴,垂足为B,且S△AOB=1
1)求两个函数解析式
2)求△ABC的面积
6、已知反比例函数的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数的图象与x轴的交点坐标。
三、小结:
1、本节复习课主要复习本章学生应知应会的概念、图像、性质、应用等内容,夯实基础提高应用。
2、充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
4.5相似多边形
教学目标:
1、了解相似多边形的概念和性质.
2、在简单情形下,能根据定义判断两个多边形相似.
3、会用相似多边形的性质解决简单的几何问题.
重点与难点:
1、本节教学的重点是相似多边形的定义和性质.
2、要判断两个多边形是否相似,需要看它们的边是否对应成比例、对应角是否相等,情形要比三角形复杂,是本节教学的难点.
知识要点:
1、对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比..
2、相似多边形的周长的比等于相似比,面积比等于相似比的平方.
重要方法:
相似多边形的周长比等于相似比,面积比等于相似比,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化.
教学过程:
一、创设情景
如图:四边形A1B1C1D1是四边形ABCD经过相似变换所得的像,
请分别求出这两个四边形的对应边的长度,并分别量出这两个
四边形各个内角的度数,
然后与你的同伴议一议;这两个四边形的对应角之间有什么
关系 对应边之间有什么关系
二、新课
1、相似多边形
各对应角相等、各对应边成比例的两个多边形叫做相似多边形.
对应顶点的字母写在对应的位置上,如四边形A1B1C1D1∽四边形ABCD
相似多边形对应边的比叫做相似比. 四边形A1B1C1D1与四边形ABCD的相似比为k=
判断,它们形状相同吗?
这两个五边形是相似六边形,即六边形A1B1C1D1E1F1∽六边形ABCDEF.
2、例题
例 下列每组图形的形状相同,它们的对应角有怎样的关系 对应边呢?
(1) 正三角形ABC与正三角形DEF;
(2) 正方形ABCD与正方形EFGH.
解:(1)由于正三角形每个角等于60°,所以∠A=∠D= 60°,∠B=∠E=60°,∠C=∠F= 60°.
由于正三角形三边相等,所以AB:DE=BC:EF=CA:FD
解:(2)、由于正方形的每个角都是直角,所以∠A=∠E= 90°∠B=∠F=90°
∠C=∠G= 90° ∠D=∠H= 90°
由于正方形的四边相等,所以AB:EF=BC:FG=CD:GH=DA:HE
练习
(1)它们相似吗?
(2)它们呢?
3、相似多边形的性质
问题:如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?
相似多边形的性质:
相似多边形的对应角相等,对应边成比例.
相似多边形的周长之比等于相似比;面积之比等于相似比的平方.
做一做P119 1、2
4、例题
矩形纸张的长与宽的比为 ,对开后所得的矩形纸张是否与原来的矩形纸相似 请说明理由.
5、课内练习
(1)右面两个矩形相似,求它们对应边的比.
(2∶3
)
(2)如图,两个正六边形的边长分别为a和b,它们相似吗?为什么?
(相似.理由是:各对应角相等,各对应边成比例.
)
(3)如图,矩形的草坪长20m,宽10m,沿草坪四周外围有1m的环行小路,小路的内外边缘所成的矩形相似吗?
(4)P120 课内练习1、2、3
6、探究活动P120
三、小结
1、对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比..
2、相似多边形的周长的比等于相似比,面积比等于相似比的平方.
重要方法:
运用相似多边形的性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化.
四、作业
1、见作业本
2、书本P121 1、2、3、4、5、6
A
B
C
D
A1
B1
C1
D1
A1
B1
C1
D1
E1
F1
A
B
C
D
E
F
菱形
12
12
正方形
10
10
正方形
10
10
矩形
8
12
EMBED Flash.Movie
2
3
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
3.4圆周角(2)
教学目标:
1. 经历探索圆周角定理的另一个推论的过程.
2. 掌握圆周角定理的推论“在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等”
3. 会运用上述圆周角定理的推论解决简单几何问题.
教学重点:圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等”
教学难点:例3涉及圆内角与圆外角与圆周角的关系,思路较难形成,表述也有一定的困难
例4的辅助线的添法.
教学过程:
一、旧知回放:
1、圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角.
特征:① 角的顶点在圆上.
② 角的两边都与圆相交.
2、圆心角与所对的弧的关系
3、圆周角与所对的弧的关系
4、同弧所对的圆心角与圆周角的关系
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
二. 课前测验
1.100 的弧所对的圆心角等于_______,所对的圆周角等于_______。
2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为________________。
3、如图,在⊙O中,∠BAC=32 ,则∠BOC=________。
4、如图,⊙O中,∠ACB = 130 ,则∠AOB=______。
5、下列命题中是真命题的是( )
(A)顶点在圆周上的角叫做圆周角。
(B)60 的圆周角所对的弧的度数是30
(C)一弧所对的圆周角等于它所对的圆心角。
(D)120 的弧所对的圆周角是60
三, 问题讨论
如图1,在⊙O中,∠B,∠D,∠E的大小有什么关系 为什么
圆周角定理的推论1:同圆或等圆中,同弧或等弧所对的圆周角相等;
同圆或等圆中,相等的圆周角所对的弧也相等。
四.例题教学:
例2: 已知:如图,在△ABC中,AB=AC,
以AB为直径的圆交BC于D,交AC于E,
求证:⌒ ⌒
BD=DE
证明:连结AD.
∵AB是圆的直径,点D在圆上,
∴∠ADB=90°
∴AD⊥BC,∵AB=AC,
∴AD平分顶角∠BAC,即∠BAD=∠CAD,
⌒ ⌒
∴BD=DE(同圆或等圆中,相等的圆周角所对弧相等)。
练习:如图,P是△ABC的外接圆上的一点∠APC=∠CPB=60°。
求证:△ABC是等边三角形
例3: 船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁。如图A,B表示灯塔,暗礁分布在经过A,B两点的一个圆形区域内,C表示一个危险临界点,∠ACB就是“危险角”,当船与两个灯塔的夹角大于“危险角”时,就有可能触礁。
问题:弓形所含的圆周角∠C=50°,问船在航行时怎样才能保证不进入暗礁区
(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么?
(2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么?
五:练一练:
1.说出命题’圆的两条平行弦所夹的弧相等”的逆命题.原命题和逆命题都是真命题吗 请说明理由.
2.已知:四边形ABCD内接于圆,BD平分∠ABC,且AB∥CD.求证:AB=CD
六.想一想: 如图:AB是⊙O的直径,弦CD⊥AB于点E,G是⌒上任意一点,延长AG,与DC的延长线相交于点F,连接AD,GD,CG,找出图中所有
和∠ADC相等的角,并说明理由.
拓展练习:
1、已知BC为半圆O的直径,AB=AF,AC交BF于点M,过A点作AD⊥BC于D,交BF于E,则AE与BE的大小有什么关系?为什么?
七:小结: 1、本节课我们学习了哪些知识?
2、圆周角定理及其推论的用途你都知道了吗?
B
A
D
C
B
A
C
O
A
B
C
O
A
D
G
F
C
E
O
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
2.4二次函数的应用(1)
教学目标:
1、经历数学建模的基本过程。
2、会运用二次函数求实际问题中的最大值或最小值。
3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。
教学重点和难点:
重点:二次函数在最优化问题中的应用。
难点:例1是从现实问题中建立二次函数模型,学生较难理解。
教学设计:
一、创设情境、提出问题
出示引例 (将作业题第3题作为引例)
给你长8m的铝合金条,设问:
①你能用它制成一矩形窗框吗?
②怎样设计,窗框的透光面积最大?
③如何验证?
二、观察分析,研究问题
演示动画,引导学生观察、思考、发现:当矩形的一边变化时,另一边和面积也随之改变。深入探究如设矩形的一边长为x米,则另一边长为(4-x)米,再设面积为ym2,则它们的函数关系式为
并当x =2时(属于范围)即当设计为正方形时,面积最大=4(m2)
引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。
步骤:
第一步设自变量;
第二步建立函数的解析式;
第三步确定自变量的取值范围;
第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。
三、例练应用,解决问题
在上面的矩形中加上一条与宽平行的线段,出示图形
设问:用长为8m的铝合金条制成如图形状的矩形窗框,
问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?
引导学生分析,板书解题过程。
变式(即课本例1):现在用长为8米的铝合金条制成如图所示的窗框(把矩形的窗框改为上部分是由4个全等扇形组成的半圆,下部分是矩形),那么如何设计使窗框的透光面
积最大?(结果精确到0.01米)
练习:课本作业题第4题
四、知识整理,形成系统
这节课学习了用什么知识解决哪类问题?
解决问题的一般步骤是什么?应注意哪些问题?
学到了哪些思考问题的方法?
五、布置作业:作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
2.1二次函数
教学目标:
1、 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、 理解二次函数的概念,掌握二次函数的形式。
3、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4、 会用待定系数法求二次函数的解析式。
教学重点:二次函数的概念和解析式
教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
教学设计:
一、创设情境,导入新课
问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?
问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)
2、 合作学习,探索新知
请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:
(1)面积y (cm2)与圆的半径 x ( Cm )
(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y元;
(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)
(1) 教师组织合作学习活动:
1、 先个体探求,尝试写出y与x之间的函数解析式。
2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。
(1)y =πx2 (2)y = 2000(1+x)2 = 20000x2+40000x+20000
(3) y = (60-x-4)(x-2)=-x2+58x-112
(二)上述三个函数解析式具有哪些共同特征?
让学生充分发表意见,提出各自看法。
教师归纳总结:上述三个函数解析式经化简后都具y=ax +bx+c (a,b,c是常数, a≠0)的形式.
板书:我们把形如y=ax +bx+c(其中a,b,C是常数,a≠0)的函数叫做二次函数(quadratic funcion)
称a为二次项系数, b为一次项系数,c为常数项,
请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项
(2) 做一做
1、 下列函数中,哪些是二次函数?
(1) (2) (3) (4)
(5)
2、分别说出下列二次函数的二次项系数、一次项系数和常数项:
(1) (2) (3)
3、若函数为二次函数,则m的值为 。
三、例题示范,了解规律
例1、已知二次函数 当x=1时,函数值是4;当x=2时,函数值是-5。求这个二次函数的解析式。
此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边板书示范,强调书写格式和思考方法。
练习:已知二次函数 ,当x=2时,函数值是3;当x=-2时,函数值是2。求这个二次函数的解析式。
例2、如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分)。设AE=BF=CG=DH=x(cm) ,四边形EFGH的面积为y(cm2),求:
(1) y关于x 的函数解析式和自变量x的取值范围。
(2) 当x分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH的面积,并列表表示。
方法:
(1)学生独立分析思考,尝试写出y关于x的函数解析式,教师巡回辅导,适时点拨。
(2)对于第一个问题可以用多种方法解答,比如:
求差法:四边形EFGH的面积=正方形ABCD的面积-直角三角形AEH的面积DE4倍。
直接法:先证明四边形EFGH是正方形,再由勾股定理求出EH2
(3)对于自变量的取值范围,要求学生要根据实际问题中自变量的实际意义来确定。
(4)对于第(2)小题,在求解并列表表示后,重点让学生看清x与y 之间数值的对应关系和内在的规律性:随着x的取值的增大,y的值先减后增;y的值具有对称性。
练习:
用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x,矩形的面积为y,求:
(1)写出y关于x的函数关系式.
(2)当x=3时,矩形的面积为多少
4、 归纳小结,反思提高
本节课你有什么收获?
5、 布置作业
课本作业题
H
D
G
C
F
E
B
A
x
3
1
1
1
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
3.3圆心角(1)
教学目标:1、经历探索圆的中心对称性和旋转不变性的过程,
2、理解圆心角的概念,并掌握“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等”的定理(圆心角定理)。
3、体验利用旋转变换来研究圆的性质的思想方法。
教学重点:圆心角定理
教学难点:根据圆的旋转不变性推出圆心角定理,需用到图形的旋转变换。
教学内容设计
(一)圆的对称性和旋转不变性
学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.
引出圆心角和弦心距的概念:
圆心角定义:顶点在圆心的角叫圆心角.
弦心距定义:从圆心到弦的距离叫做弦心距.
(二)圆心角、弧、弦、弦心距之间的关系
应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.
定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.
(三)应用、巩固和反思 ( http: / / www.teachercn.com / Xxyw / Fs / " \t "_blank )
1、判断题,下列说法正确吗?为什么?
如图,因为∠AOB=∠COD,所以AB= CD, =.
2、例1、用直尺和圆规把⊙O四等分
(可以让学生先尝试自己找出作法,在学生尝试过程中,教师作适当的启发)
提问:如何把圆八等分
(四)深化提高,得出推论
先让学生观察右图,提问:圆周所对的圆心角有多大?(360°)请大家想象一下,当把顶点在圆心的圆周等分成360份后,相应的把整个圆分成多少份?(360份)这时,每一份圆心角即1°的圆心角就对着1°的弧,我们把这一份的弧叫做1°的弧。
提问:n°的圆心角所对的弧是几度?
推论:圆心角的度数等于它所对的弧的度数。
练习:(1)你还有什么方法把圆八等分?
(2)课本第70页课内练习1、2、3
(六)小结:学生自己归纳,老师指导.
知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.
能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.
(七)作业:
(1)课本第71页作业题 和作业本
(2)圆心角定理是在同圆和等圆这个大前提下,已知圆心角相等,得出其余的三组量相等,请同学们课后思考,在这个大前提下,把圆心角相等与结论中的任何一个交换位置,可以得到新命题,这三个是真命题吗?如何证明?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
3.5弧长及扇形的面积(1)
教学目标:1、 经历探索弧长计算公式的过程
2、掌握弧长计算公式,并会应用公式解决问题。
教学重点:圆的弧长计算公式
教学难点:例1图形较为复杂,牵涉的知识点较多,并需添加辅助线,思路不易形成。
教学设计:
一、复习(圆周长)
已知⊙O半径为R,⊙O的周长C是多少?C=2πR
这里π=3.14159…,这个无限不循环的小数叫做圆周率.
由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?
提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.
二、探究新问题、归纳结论
教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).
研究步骤:
(1)圆周长C=2πR;
(2)1°圆心角所对弧长= ;
(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
(4)n°圆心角所对弧长= .
归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则
(弧长公式)
(三)理解公式、区分概念
教师引导学生理解:
(1)在应用弧长公式 进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
(3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.
(四)初步应用
例1、填空:
(1)半径为3cm,120°的圆心角所对的弧长是_______cm;
(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;
(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.
例2、例1 一段圆弧的公路弯道,圆弧的半径是2km,一辆汽车以每小时60km的速度通过弯道,需20秒.求弯道所对的圆心角的度数。(精确到0.1度)
分析:(1)对照弧长公式,那些量是直接已知的,哪个量是要求的?
(2)要求弯道所对圆心角的度数,应先求出什么?
解(略)
例3、 如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,已知AC=15,⊙O的半径为R=30,求的长。
分析:(1)要求的长,关键是求出所对的圆心角∠BOD的大小。
(2)如何求∠BOD的大小呢?
(3)利用已知条件并通过添加辅助线,构造出△DOB来帮助解决。
课堂练习:作业题第4题
五、总结
知识:圆周长、弧长公式;圆周率概念;
能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.
六、作业 作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
4.3相似三角形的判定(2)
教学目标:
1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形相似”的探索过程。
2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形相似”的两个三角形相似的判定方法。
3、能运用上述两个判定方法判定两个三角形相似。
教学重点:
相似三角形的判定方法:“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形相似”
教学难点:
例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判定两个三角形的三边是否成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点。
知识要点:
1、两边对应成比例,且夹角相等的两个三角形相似。
2、三边对应成比例的两个三角形相似。
教学过程:
1、复习提问
1、 我们已经学习了几种判定三角形相似的方法?
1、平行于三角形一边直线定理 ∵DE‖BC,∴⊿ADE∽⊿ABC
2、判定定理1: ∵∠A=∠A ,∠B=∠B ,∴⊿ABC∽⊿ABC
3、直角三角形中的一个重要结论
∵∠ACB=90,CD⊥AB,
∴⊿ABC∽⊿ACD∽⊿CDB
2、合作学习:P109--110
下面我们来探究还可用哪些条件来判定两个三角形相似
我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS” 、“SSS”判定方法,三角形相似还有两个判定方法,即判定定理2和判定定理3。
(1) 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。可以简单说成“两边对应成比例且夹角相等,两三角形相似”
(2)
已知:如图,△A B C 和△ABC中,∠A =∠A,A B :AB=A C :AC
求证:△A B C ∽△ABC
判定定理2的几何格式:
∴△A B C ∽△ABC
例1.如图已知点D,E分别在AB,AC上,
求证:DE//BC
(2) 判定定理3:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。可简单说成:三边对应成比例,两三角形相似。
判定定理2的几何格式:
∴△A B C ∽△ABC
例2.如图判断4×4方格中的两个三角形是否相似,并说明理由.
例3. 依据下列各组条件,判定△ABC与△A B C 是不是相似,并说明为什么:
⑴∠A=120 ,AB=7厘米,AC=14厘米,
∠A =120 ,A B =3厘米,A C =6厘米;
⑵AB=4厘米,BC=6厘米,AC=8厘米,
A B =12厘米,B C =18厘米,A C =24厘米
探究活动:在有平行横线的练习薄上画一条线段AB,使线段A,B恰好在两条平行线上,线段AB就被平行线分成了相等的三小段,你能说出这一事实的数学原理吗 如果只给你圆规和直尺,你会把任意一条线段AB五等分吗 请试一试,并说明你的画法的依据.
课堂小结:今天你有什么收获?
布置作业:课后作业题、作业本。
B
C
D
E
A
E
D
F
B
A
C
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
《相似三角形的复习》教案
一、教学目标
知识目标:
①掌握三角形相似的判定方法。
②会用相似三角形的判定方法和性质来判断及计算。
能力目标:
①通过相似三角形的判定方法培养学生的动手操作能力。
②利用相似三角形的判定及其性质进行有关判断及计算,培养培养学生的抽象思维能力和解决实际问题的能力。
情感目标:使学生认识数学与生活的密切联系,体验在数学学习活动中探索与创造的乐趣,
通过合作交流学习,培养他们的团队合作精神,增强学习数学的兴趣和信心。
二、教学重点与难点:
重点:三角形相似的判定性质及其应用。
难点:三角形相似的判定和性质的灵活运用。
三、教学过程:
(一)知识回顾
1、三角形相似的判定方法有哪几种
2、相似三角形的性质有哪些?
一、练一练
1.如图,P是△ABC中AB边上的一点,要使△ACP∽△ABC需添加一个条件为
2.在□ABCD中,AE:BE=1:2,若S△AEF=6cm2,则S△CDF = cm2 , S△ADF= cm2
二、知识应用
1、如图,正方形ABCD中,E是DC中点,.求证: AE⊥EF
2、如图,DE∥BC,EF∥AB,且S△ADE=25,S△CEF=36,求△ABC的面积.
3、如图,⊙O是△ABC的外接圆,且AB=AC,求证:AB2=AE·AD
4、在方格纸中,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形,在如图4x4的格纸中, △ ABC是一个格点三角形。
(1)在图1中,请你画一个格点三角形,使它与△ ABC相似(相似比不为1)
(2)在图2中,请你再画一个格点三角形,使它与△ ABC相似(相似比不为1),但与图1中所画的三角形大小不一样.
三、拓展提高
如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=45°
(1)求证:△ABD∽△DCE
(2)设BD=x,AE=y,求y关于x的函数关系式及自变量x的取值范围,并求出当BD为何值时AE取得最小值
(3)当△ADE是等腰三角形时,求AE的长
(四)回顾和小结
(五)作业:试卷
E
C
D
B
A
C
B
A
O·
E
D
C
B
A
F
E
D
C
B
A
F
E
D
C
B
A
F
E
D
C
B
A
C
P
B
A
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
2.4二次函数的应用(2)
教学目标:
1、继续经历利用二次函数解决实际最值问题的过程。
2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。
3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
教学重点和难点:
重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。
难点:例2将现实问题数学化,情景比较复杂。
教学过程:
一、复习:
1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:
(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。
(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。
2、上节课我们讨论了用二次函数的性质求面积的最值问题。出示上节课的引例的动态
图形(在周长为8米的矩形中)(多媒体动态显示)
设问:(1)对角线(L)与边长(x)有什何关系?
(2)对角线(L)是否也有最值?如果有怎样求?
L与x 并不是二次函数关系,而被开方数却可看成是关于x 的二次函数,并且有最小值。引导学生回忆算术平方根的性质:被开方数越大(小)则它的算术平方根也越大(小)。指出:当被开方数取最小值时,对角线也为最小值。
二、例题讲解
例题2:B船位于A船正东26km处,现在A、B两船同时出发,A船发每小时12km的速度朝正北方向行驶,B船发每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?
多媒体动态演示,提出思考问题:(1)两船的距离随着什么的变化而变化?
(2)经过t小时后,两船的行程是多少? 两船的距离如何用t来表示?
设经过t小时后AB两船分别到达A’,B’,两船之间距离为A’B’===。(这里估计学生会联想刚才解决类似的问题)
因此只要求出被开方式169t2-260t+676的最小值,就可以求出两船之间的距离s的最小值。
解:设经过t时后,A,B AB两船分别到达A’,B’,两船之间距离为
S=A’B’==
== EQ \R(,169(t-)2+576) (t>0)
当t=时,被开方式169(t-)2+576有最小值576。
所以当t=时,S最小值==24(km)
答:经过时,两船之间的距离最近,最近距离为24km
练习:直角三角形的两条直角边的和为2,求斜边的最小值。
三、课堂小结
应用二次函数解决实际问题的一般步骤
4、 布置作业:见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
4.6 图形的位似
一、教材分析:
1、教材的地位和作用
“4.6图形的位似”是浙教版九年级(上)第四章的内容,是相似形的延伸和深化。位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形。从教材编排的一些素材看,不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值。因此,本节教材对形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,具有积极促进的作用。
2、教学内容的确定
新课标的理念:数学教育要面向全体学生,人人都能获得必需的数学。4.6图形的位似,作为新增的内容,以其丰富的社会背景为素材展示给我们,使我们感受到数学创造的乐趣,但它对后续学习的知识联系不是很大,所以,本节课的教学内容应以教材的编排为准,概念、性质、应用等让学生容易接受就好,水到渠成,不必要拓展和深化,按教材编排,“4.6图形的位似”为1课时完成。用“观察——验证——推理和交流”的方法,培养学生主动探求知识的精神和思维的条理性。
3、教学目标:
根据新课标要求,结合教材特点,本节课应达到以下几个目标:
1.理解图形的位似概念,掌握位似图形的性质。
2.会利用作位似图形的方法把一个图形进行放大或缩小。
3.掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。
4.经历位似图形性质的探索过程,进一步发展学生的探究、交流能力,培养学生动手、动脑、手脑和谐一致的习惯。
5.利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识。
6.发展学生的合情推理能力和初步的逻辑推理能力。
4、教学重点和难点
本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
直角坐标系中图形的位似变化与对应点坐标的关系,因为它涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,所以是本节教学的难点。
二、教法:
力求呈现“问题情境――建立数学概念――解释、应用与拓展”的模式,围绕所要学习的“图形的位似”主题,选择一些有意义的、能够表现位似图形的意义、有利于学生在自主探索和合作交流的过程中建立并求解包含该主题的数学模型,判断解的合理性并将所学的主题应用到其他场合,进而获得相应的数学知识、方法与技能,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心。如结合本节课内容和学生的实际水平,可采用“观察——验证——推理和交流”的教学方法,在教学过程中,又可通过设置带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,让学生经历位似图形性质的探索过程,激发学生探求知识的欲望,使学生始终处于主动探索问题的积极状态,使获取新知识水到渠成。步步为营,顺理成章地突破教学难点.
考虑到如何更直观、形象地突破教学重、难点,增大课堂容量,提高课堂效率,采用了多媒体辅助教学。
三、学法:
叶圣陶说“教是为了不教”,也就是我们传授给学生的不只是知识内容,更重要的是指导学生一些数学的学习方法。在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新。而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳。
在分析理解位似图形的性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力。通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯。
四.教学过程
一.创设情景,构建新知
1.位似图形的概念
下列两幅图有什么共同特点?通过对图的观察能从生活中找到一种感觉吗?(像一种什么镜头)
图片的形状相同,而且每组对应顶点都在由同一点出发的一条射线上.
如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.
例如上图中的任何两个五角星都是位似图形,点O是它们的位似中心;放电影时,胶片与屏幕的画面也是位似图形,光源就是它们的位似中心.
2.引导学生观察位似图形
下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,并判断哪些是位似图形,哪些不是位似图形? 为什么?
每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点。所以都是位似图形。
各对应点所在的直线都经过同一点的相似图形是位似图形。其相似比又叫做它们的位似比.
显然,位似图形是相似图形的特殊情形。
3.练一练:判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′;
(2)在平行四边形ABCD中,△ABO与△CDO
(3)正方形ABCD与正方形A′B′C′D′.
(4)等边三角形ABC与等边三角形A′B′C′
(5)反比例函数y=(x>0)的图像与y=(x<0)的图像
(6)曲边三角形ABC与曲边三角形A′B′C′
(7)扇形ABC与扇形A′B′C′,(B、A 、B′在一条直线上,C、A 、C′在一条直线上)
(8)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
通过上面几个练习,使学生明白:图形相似;对应顶点的连线经过同一点,是判断位似图形两个不可缺少的条件。
2.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.
二.应用新知,适当提高.
1.位似图形的性质
(1)从上面练习第1(1)(4)题图中,我们可以看到,△OAB∽△O A′B′,则==.从第2题的图中同样可以看到====
一般地,位似图形有以下性质
位似图形上任意一对对应点到位似中心的距离之比等于位似比.
2.作位似图形
例:如图,请以坐标原点O为位似中心,作的位似图形,并把的边长放大3倍.
分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O和的各顶点,并把线段延长(或反向延长)到原来的3倍,就得到所求作图形的各个顶点.
作法:如图所示
1.连结OA,OB,OC,OD.
2.分别延长OA,OB,OC,OD到G,C,E,F,使====3.
3.依次连结GC,CE,EF,FG.
四边形GCEF就是所求作的四边形.
如果反向延长OA,OB,OC,OD,就得到四边形G′C′E′F′,也是所求作的四边形.
3.直角坐标系中图形的位似变化与对应点坐标变化的规律
想一想:
1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性?
2.怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形?
比较图形中各对应点的坐标,我们还不难发现
以坐标原点为位似中心的位似变换有一下性质:若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky).
4.练一练:
1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长缩小到原来的.
2.如图,在直角坐标系中,△ABC的各个顶点的坐标为A(-1,1),B(2,3),C(0,3).现要以坐标原点O为位似中心,位似比为,作△ABC的位似图形△A′B′C′,则它的顶点A′、B′、C′的坐标各是多少?
三.小结内容,自我反馈
今天你学会了什么?
位似图形的定义,位似图形的性质.
四.作业
1.P125作业题
2.见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 8 页)登陆21世纪教育 助您教考全无忧
2.2二次函数的图象(3)
教学目标:
1、了解二次函数图像的特点。
2、掌握一般二次函数的图像与的图像之间的关系。
3、会确定图像的开口方向,会利用公式求顶点坐标和对称轴。
教学重点:二次函数的图像特征
教学难点:例2的解题思路与解题技巧。
教学设计:
一、回顾知识
1、二次函数的图像和的图像之间的关系。
2、讲评上节课的选作题
对于函数,请回答下列问题:
(1)对于函数的图像可以由什么抛物线,经怎样平移得到的?
(2)函数图像的对称轴、顶点坐标各是什么?
思路:把化为的形式。
=
在中,m、k分别是什么?从而可以确定由什么函数的图像经怎样的平移得到的?
二、探索二次函数的图像特征
1、问题:对于二次函数y=ax +bx+c ( a≠0 )的图象及图象的形状、开口方向、位置又是怎样的?学生有难度时可启发:通过变形能否将y=ax +bx+c转化为y = a(x+m)2 +k的形式 ?
=
由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。
练习:课本第37页课内练习第2题(课本的例2删掉不讲)
2、二次函数的图像特征
(1)二次函数 ( a≠0)的图象是一条抛物线;
(2)对称轴是直线x=,顶点坐标是为(,)
(3)当a>0时,抛物线的开口向上,顶点是抛物线上的最低点。
当a<0时,抛物线的开口向下,顶点是抛物线上的最高点。
三、巩固知识
1、例1、求抛物线的对称轴和顶点坐标。
有由学生自己完成。师生点评后指出:求抛物线的对称轴和顶点坐标可以采用配方法或者是用顶点坐标公式。
2、做一做课本第36页的做一做和第37页的课内练习第1题
3、(补充例题)例2已知关于x的二次函数的图像的顶点坐标为(-1,2),且图像过点
(1,-3)。
(1)求这个二次函数的解析式;
(2)求这个二次函数的图像与坐标轴的交点坐标。(此小题供血有余力的学生解答)
分析与启发:(1)在已知抛物线的顶点坐标的情况下,将所求的解析式设为什么比较简便?
4、练习:(1)课本第37页课内练习第3题。
(2)探究活动:一座拱桥的示意图如图(图在书上第37页),当水面宽12m时,桥洞顶部离水面4m。已知桥洞的拱形是抛物线,要求该抛物线的函数解析式,你认为首先要做的工作是什么 如果以水平方向为x轴,取以下三个不同的点为坐标原点:
1、点A 2、点B 3、抛物线的顶点C
所得的函数解析式相同吗?请试一试。哪一种取法求得的函数解析式最简单?
四、小结
1、函数的图像与函数的图像之间的关系。
2、函数的图像在对称轴、顶点坐标等方面的特征。
3、函数的解析式类型:
一般式:
顶点式:
五、布置作业
课本作业题
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
4.1比例线段(1)
教学目标:
1.理解比例的基本性质。
2.能根据比例的基本性质求比值。
3.能根据条件写出比例式或进行比例式的简单变形。
教学重点、难点:
教学重点:比例的基本性质
教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。
知识要点:
1.如果两个数的比值与另两个数的比值相等,那么这四个数成比例。
2.a、b、c、d四个实数成比例,可表示成a:b=c:d或=,其中b、c叫做内项,a、d叫做外项。
3.基本性质:=<=>ad=bc(a、b、c、d都不为零)
重要方法:
1.判断四个数a、b、c、d是否成比例,
方法1:计算a:b和c:d的值是否相等;
方法2:计算ad和bc的值是否相等,(利用ad=bc推出=)
2.“=<=>=”的比例式之间的变换是抓住实质ad=bc。
3.记住一些常用的结论:
==>=,=。
教学过程:
一、复习引入
1、举例说明生活中大量存在形状相同,但大小不同的图形。
如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30°角的三角尺等。
2、美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618这个比值有关。你知道0.618这个比值的来历吗?
说明学习本章节的重要意义。
3.如何求两个数的比值?
二、自学新课,探究结论
阅读思考题
(1)什么是两个数的比?2与—3的比;—4与6 的比。如何表示?其比值相等吗?用小学学过的方法可说成为什么?可写成什么形式?
(2)比与比例有什么区别?
(3) 用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道内项、外项和第四比例项的概念吗?
回答(1)2:(—3)=—;—4:6=—=—;=,2,—3,—4,6四个数成比例。注意四个数字的书写顺序
(2)比是一个值;比例是一个等式。
(3)a:b=c:d =,a,d叫做比例外项,b,c叫做比例内项,d,叫做a,b,c的第四比例项。
注意这里的字母是泛指,概念只与位置有关,第四比例项必须描述清楚是谁的第四比例项。
补充练习:
①指出=的比例内项、比例外项及第四比例项。
②求3,4,5的第四比例项。
P96做一做1,2
(2答案:等式=的两边同乘以bd,可由=推出ad=bc。反过来等式ad=bc两边同除以bd,即可由ad=bc推出=)
比例的基本性质:基本性质:=<=>ad=bc(a、b、c、d都不为零)
两内项之积等于两外项之积。
说明:由==>ad=bc的形式是唯一的,而由ad=bc=>=的形式不唯一,有8个不同的比例式。可以补充,但不出现更比定理的名称。
三、模仿与应用
例1:根据下列条件,求a:b的值。
(1)2a=3b;(2) =
比例的基本性质直接运用,其中第2小题两次运用了性质,初学时易差错,要求学生重视对变形结果的检验,即变形后是否仍然满足“两内项之积等于两外项之积”。
例2:已知=,判断下列比例式是否成立,并说明理由。
(1)=;(2)=
分析:(1)比较条件和结论的形式得到解题思路;
(2)采用设比值较为简单。
这两个小题反映了在比例式的变形中的两种常用方法:一是利用等式的基本性质;二是设比值。
课堂练习:P97课内练习、作业题、条件活动(学生板演)
补充练习:(1)已知:x:(x+1)=(1—x):3,求x。
(2)若=,求。
(3) 若=,求,
(4)若x2-3xy+2y2=0,求
(5)已知==求,
(6)已知x:y:z=4:5:7,求,
(7)a:b:c=1:3:5 且a+2b—c=8求a、b、c
(8)已知x:y=3:4,x:z=2:3,求x:y:Z的值。
(9)若,求,
(10)===k,求k的值(两种情况)。
(11)已知在△ABC中,D、E分别是AB、AC上的点,AB=12,AE=6,EC=4,且=.求AD的长。
(12)已知1,,2三个数,请你再添上一个数,写出一个比例式。
(13)操场上有一群学生在玩游戏,其中男生与女生的人数比例是3:2,后来又有6名女同学参加进来,此时女生与女生人数的比为5:4,求原来各有多少男生和女生?
四、课堂小结
1.比例的概念,比例的基本性质;
2.判断四个数成比例的基本方法;
3.比例式变形的常用方法:(1)利用等式性质;(2)设比值。
五、作业:见作业本
六、教后感
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
《圆的基本性质》 单元复习
考点分析:
随着对复杂几何证明要求的降低,对圆一章内容的删减,圆的考题难度有明显降低。
与圆有关的位置关系,试题强调基础,突出能力,源于教材,知识重组,变中求新,重在培养创新意识。要注意分类讨论和有关圆的问题的多解性,同时结合阅读理解,条件开放,结论开放的探索题型,结合运动的动态型综合题问题,结合函数的函数几何综合题逐渐成为新课程中的热门考点。
【本章知识框架】
圆 基本元素:圆的定义,圆心,半径,弧,弦,弦心距
的 垂径定理
认 对称性:旋转不变性,轴对称,中心对称(强)
识 圆心角、弧、弦、弦心距的关系
与圆有关的角:圆心角,圆周角
弧长,扇形的面积,弓形的面积,及组合的几何图形
圆中的有关计算:
圆锥的侧面积、全面积
一、圆的概念
1、圆的定义:线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.点O叫做圆心,线段OP叫做半径。
2、弧:圆上任意两点间部分叫做圆弧,简称弧。优弧、劣弧以及表示方法。
3、弦,弦心距,圆心角,圆周角,
【例1】如图23-1,已知一个圆,请你用多种方法确定圆心.
分析:要确定一个圆的圆心,我们可以从两个方面分析:
(1) 圆心在弦的中垂线上;(2) 圆心是直径的交点。
【例2】下列命题正确的是( )
A.相等的圆周角对的弧相等 B.等弧所对的弦相等
C.三点确定一个圆 D.平分弦的直径垂直于弦.
【例3】填空:
⑴ 一条弦把圆分成两部分,则劣弧所对的圆心角的度数是 ;
⑵ 等边△ABC内接于⊙O,∠AOB= 度。
4、判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有:
d>r 点P在⊙O 外;
d=r 点P在⊙O 上;
d【例4】 ⊙O的半径为4 cm,若线段OA的长为10 cm,则OA的中点B在⊙O的______,若线段OA的长为6 cm,则OA的中点B在⊙O的______。
【例5】一个点到圆的最大距离为1l cm,最小距离为5 cm,则圆的半径为______。
【例6】P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x、y都是整数,则这样的点共有 ( )
A 4个 B 8个 C 12个 D 16个
5、三角形的外接圆,外心
三角形的外心:是三角形三边垂直平分线的交点,它是三角形外接圆的圆心。
知识点:锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部。
三角形外心到三角形三个顶点的距离相等。
相关知识:三角形重心,是三角形三边中线的交点,在三角形内部。
【例7】(2004.北京东城)如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。
答案:2π。
二、圆的性质
1、旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;
2、圆是中心对称图形,对称中心是圆心.
性质:在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个弦心距中有一对量相等,那么它们所对应的其余各对量也分别相等。
3、轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.
【例8】(浙江)世界上因为有了圆的图案,万物才显得富有生机,以下来自生活中的图形中都有圆(如图3所示).
图中的(1),(2),(3)三个图看上去多么美丽与和谐,这正是因为圆具有轴对称性和中心对称性.
⑴ 请问(1),(2),(3)三个图形中是轴对称图形的有 ,是中心对称图形的有 ;(用(1),(2),(3)这三个图形的代号填空)
⑵ 请在图(4),(5)的两个圆内,按要求分别画出与上面图案不重复的图案(草图),(用尺规画,或徒手画均可,但要尽可能准确些、美观些)要求图4是轴对称图形,但不是中心对称图形;图5既是轴对称图形,又是中心对称图形。
【例9】如图,OE、OF分别是⊙O的弦AB、CD的弦心距,如果OE=OF,那么 (只需写出一个正确的结论).
【例10】(2003 北京市)如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为( )
A 2 B 3 C 4 D 5
答案:A.
【例11】(2002 青海省)⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为( )
A.2cm B.14cm
C.2cm或14cm D.10cm或20cm
【例12】(2001 吉林省)如图23-14,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,那么OP的长的取值范围是_________.
4、与圆有关的角
⑴ 圆心角:顶点在圆心的角叫圆心角。
圆心角的性质:圆心角的度数等于它所对的弧的度数。
⑵ 圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角。
圆周角的性质:
① 圆周角等于它所对的弧所对的圆心角的一半.
② 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.
③ 90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.
【例13】(2001 青海省)如图23-18,四边形ABCD是⊙O的内接四边形,且AD∥BC,对角线AC、BD交于点E,那么圆中共有_________对全等三角形,_________对相似比不为1的相似三角形.
【例14】(江西)如图所示,在⊙O中,AB是直径,CD是弦,AB⊥CD。P是圆上一动点(不与C、D重合),试说明∠CPD与∠COB与有什么数量关系,并加以说明.
答案:相等或互补。
三、弧、扇形、圆锥侧面的计算
⑴ 圆的面积:,周长:
⑵ 圆心角为n°,半径为R的弧长 .
⑶ 圆心角为n°,半径为R,弧长为l的扇形的面积 或 .
知识点:弓形的面积要转化为扇形和三角形的面积和、差来计算。
⑷ 圆锥的侧面展开图为扇形。
底面半径为R,母线长为l,高为h的圆锥的侧面积为,全面积为 ,母线长、圆锥高、底面圆的半径之间有。
【例15】扇形的半径为30cm,圆心角为1200,用它做成一个圆锥的侧面,则圆锥底面半径为( )
A 10cm B 20cm C 10πcm D 20πcm
【例16】在Rt△ABC中,已知AB=6,AC=8,∠A=90°,如果把此直角三角形绕直线AC旋转一周得到一个圆锥,其表面积为S1;把此直角三角形绕直线AB旋转一周得到另一个圆锥,其表面积为S2,那么S1∶S2等于 ( )
A 2∶3 B 3∶4 C 4∶9 D5∶12
【例17】如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影的面积为 。
四、作图
平分已知弧;作三角形的外接圆。
五、辅助线
圆中常见的辅助线
1.作半径,利用同圆或等圆的半径相等;
2.作弦心距,利用垂径定理进行证明或计算;
3.作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算;
4.作弦构造同弧或等弧所对的圆周角;
5.作弦、直径等构造直径所对的圆周角——直角;
6.遇到三角形的外心常连结外心和三角形的各顶点。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 5 页)登陆21世纪教育 助您教考全无忧
1.2反比例函数的图象和性质(1)
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能描点画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
[教学重点和难点]
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
[教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗 在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢
2、探索活动
探索活动1 反比例函数的图象.
由于反比例函数的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值 ——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点
连线:怎样连线 ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2 反比例函数的图象.
可以引导学生采用多种方式进行自主探索活动:
(1)可以用画反比例函数的图象的方式与步骤进行自主探索其图象;
(2)可以通过探索函数与之间的关系,画出的图象.
探索活动3 反比例函数与的图象有什么共同特征
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.
反比例函数(k≠0)的图象是由两个分支组成的曲线。当时,图象在一、三象限:当时,图象在二、四象限。
反比例函数(k≠0)的图象关于直角坐标系的原点成中心对称。
3、例题教学
课本安排例1,(1)巩固反比例函数的图象的性质。(2)是为了引导学生认识到:由于在反比例函数(k≠0)中,只要常数k的值确定,反比例函数就确定了.因此要确定一个反比例函数,只需要一对对应值或图象上一个点的坐标即可.(3)可以先设问:能否利用图象的性质来画图?
4、应用知识,体验成功
练笔:课本“课内练习” 1.2.3
5、归纳小结,反思提高
用描点法作图象的步骤
反比例函数的图象的性质
6、布置作业
作业本(1) 课本“作业题”
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)登陆21世纪教育 助您教考全无忧
3.1圆 (1)
教学目标:
1、经历形成圆的概念的过程,经历探索点与圆的位置关系得过程。
2、理解圆的概念,了解点与圆的位置关系;
3、会在简单条件下判断点与圆的位置关系。
教学重点:圆、弦和弧的概念,弧的表示法和点与圆的位置关系。
教学难点:点与圆的位置关系
教学过程:
一、创设情景,引入新课
1、在小学我们已经学过一些圆的知识,并且知道圆不仅在几何中占有极其重要的地位,而且在日常生活和生产实践中有着广泛的应用,你能举例说明我们周围那些物体是圆形的吗?
在学生回答的基础上,教师总结:实际生活中圆形物体的例子很多(出示一些投影图象)
2、提问:人们为什么把车轮做成圆形的?
在学生回答的基础上,教师指出:这是因为圆具有一些特殊的性质,在这一章里我们将系统研究:什么是圆?圆有哪些性质?
二、描述圆的发生过程,给出圆的定义和有关概念
1、如何用圆规画出一个圆?
2、要在操场上画一个半径为5米的大圆,如何画呢?
3、从实践中给出圆的定义
在同一平面内线段OP绕它的一个端点O旋转一周,另一个端点P所经过的封闭曲线叫做圆,定点O叫做圆心,定长 OP叫做半径。
以点0为圆心的圆记作⊙O,读作“圆O”
(利用几何画板动态演示)
4、圆的有关概念
1)连结圆上任意两点的线段叫做弦,如图BC.经过圆心的弦是直径,
图中的AB。直径等于半径的2倍.
(2)圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示.
小于半圆的弧叫做劣弧,如图中以B、C为端点的劣弧记做“⌒BC”;
大于半圆的弧叫做优弧,优弧要用三个字母表示,如图中的.
(3)半径相等的两个圆能够完全重合,我们把半径相等的两个圆叫做
等圆.例如,图中的⊙O1和⊙O2是等圆.
圆心相同,半径不相等的圆叫做同心圆。(学生画同心圆)
5、完成课本第58页的做一做
三、点和圆的位置关系
同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击10发子弹在靶上留下的痕迹。你知道这个运动员的成绩吗?请同学们算一算。(击中最里面的圆的成绩为10环,依次为9、8、…、1环)
这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径。
如图,设⊙O的半径为r,A点在圆内,B点在圆上,C点在圆外,那
OA<r, OB=r, OC>r.反过来也成立,即
若点A在⊙O内
若点A在⊙O上
若点A在⊙O外
思考与练习
(1)课内练习第2题
(2)例题:例1 如图所示,在A地正北80m的B处有一幢民房,正西100m的C处有一变电设施,在BC的中点D处是一古建筑。因施工需要,必须在A处进行一次爆破。为使民房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?
(3)如图,在A岛附近,半径约250km的范围内是一暗礁区,往北300km有一灯塔B,往西400km有一灯塔C。现有一渔船沿CB航行,问渔船会进入暗礁区吗?(课本第60页第6题)
四、课堂小结:
这节课学习了那些内容?
1、圆的定义和有关概念
2、点和圆的位置关系
五、作业:见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
2.2二次函数的图象(1)
教学目标:
1、经历描点法画函数图像的过程;
2、学会观察、归纳、概括函数图像的特征;
3、掌握型二次函数图像的特征;
4、经历从特殊到一般的认识过程,学会合情推理。
教学重点:
型二次函数图像的描绘和图像特征的归纳
教学难点:
选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。
教学设计:
1、 回顾知识
前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。)
引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即入手。因此本节课要讨论二次函数()的图像。
板书课题:二次函数()图像
二、探索图像
1、 用描点法画出二次函数 和图像
(1) 列表
x … -2 -1 0 1 2 …
… 4 1 0 1 4 …
… -4 - -1 - 0 - -1 - -4 …
引导学生观察上表,思考一下问题:
①无论x取何值,对于来说,y的值有什么特征?对于来说,又有什么特征?
②当x取等互为相反数时,对应的y的值有什么特征?
(2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).
(3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到和的图像。
2、 练习:在同一直角坐标系中画出二次函数 和的图像。
学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)
3、二次函数()的图像
由上面的四个函数图像概括出:
(1) 二次函数的图像形如物体抛射时所经过的路线,我们把它叫做抛物线,
(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。
(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。
(4) 当时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。
(最好是用几何画板演示,让学生加深理解与记忆)
3、 课堂练习
观察二次函数和的图像
(1) 填空:
抛物线
顶点坐标
对称轴
位 置
开口方向
(2)在同一坐标系内,抛物线和抛物线的位置有什么关系?如果在同一个坐标系内画二次函数和的图像怎样画更简便?
(抛物线与抛物线关于x轴对称,只要画出与中的一条抛物线,另一条可利用关于x轴对称来画)
四、例题讲解
例题:已知二次函数()的图像经过点(-2,-3)。
(1) 求a 的值,并写出这个二次函数的解析式。
(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。
练习:(1)课本第31页课内练习第2题。
(2) 已知抛物线y=ax2经过点A(-2,-8)。
(1)求此抛物线的函数解析式;
(2)判断点B(-1,- 4)是否在此抛物线上。
(3)求出此抛物线上纵坐标为-6的点的坐标。
五、谈收获
1.二次函数y=ax2(a≠0)的图像是一条抛物线.
2.图象关于y轴对称,顶点是坐标原点
3.当a>0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点
六、作业:见作业本。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 3 页)登陆21世纪教育 助您教考全无忧
4.4相似三角形的性质及其应用(1)
教学目标:
1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.
2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.
3、会运用上述两个性质解决简单的几何问题.
重点与难点:
1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.
2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.
知识要点:
三角形相似的条件:
1、相似三角形的对应角相等,对应边成比例.
2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比.
3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方.
重要方法:
1、相似三角形的相似比等于面积比的算术平方根.
2、相似三角形中的相似比和面积比的关系,应注意相似三角形这个前提,否则不成立.
教学过程:
一、问题情境
某施工队在道路拓宽施工时遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米.现在的问题是:被削去的部分面积有多大?它的周长是多少?
思考:你能够将上面生活中的问题
转化为数学问题吗?
二、新课
1、如图,4 ×4正方形网格
看一看:
ΔABC与ΔA′B′C′有什么关系?为什么?(相似)
算一算:
ΔABC与ΔA′B′C′的相似比是多少?()
ΔABC与ΔA′B′C′的周长比是多少 ()
面积比是多少?(2)
想一想:
上面两个相似三角形的周长比与相似比有什么关系?面积比与相似比又有什么关系?
结论:相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方
验一验:
是不是任何相似三角形都有此关系呢? 你能加以验证吗?
已知:如图4-24,△ABC∽△A′B′C′,且相似比为k.
求证:=k,=k2
例题
已知:如图,△ABC∽ △A′B′C′, △ABC与 △A′B′C′的相似比是k,AD、A′D′是对应高。
求证:=k
证明:
∵△ABC∽△A′B′C′
∴∠B= ∠B′
∵AD、A′D′是对应高。
∴∠ADB=∠A′D′B′=90O
∴ △ABD∽△A’B’D’
练一练:
1、已知两个三角形相似,请完成下列表格
相似比 2
周长比
面积比 10000
注:周长比等于相似比,已知相似比或周长比,
求面积比要平方,而已知面积比,求相似比或
周长比则要开方。
2、如图,D、E分别是AC,AB上的点,∠ADE=∠B,AG⊥BC于点G,AF⊥DE于点F.若AD=3,AB=5,求:
(1);
(2)△ADE与△ABC的周长之比;
(3)△ADE与△ABC的面积之比.
例1 如图:是某市部分街道图,比例尺为1∶10000;请估计三条道路围成的三角形地块ABC的实际周长和面积.
问题解决:如图,已知DE//BC,AB=30m,BD=18m, ΔABC的周长为80m,面积为100m2,求ΔADE的周长和面积
拓展延伸
1.过E作EF//AB交BC于F,其他条件不变,则ΔEFC的面积等于多少?BDEF面积为多少?
2.若设SΔABC=S, SΔADE=S1, SΔEFC=S2.请猜想:S与S1、S2之间存在怎样的关系?你能加以验证吗?
证明:DE//BC △ADE∽△ABC =()2 EQ \F(,) =
FE//BA △CFE∽△CBA =()2 EQ \F(,) =
EQ \F(,) + EQ \F(,) =1
类比猜想
如图,DE//BC,FG//AB,MN//AC, 且DE、FG、MN交于点P。
若记SΔDPM= S1, SΔPEF= S2, SΔGNP= S3,SΔABC= S、S与S1、 S2、S3之间是否也有
类似结论?猜想并加以验证。
练一练:书本P115课内练习1、2
练一练(分组练习)
证明:相似三角形的对应高的比,对应中线的比,对应角平分线的比等于相似比。
能力训练
1.若两个相似三角形的相似比是2∶3,则它们的对应高线的比是 ,对应中线的比是 ,对应角平分线的比是 ,周长比是 ,面积比是 。
2.两个等边三角形的面积比是3∶4,则它们的边长比是 ,周长比是 。
3.某城市规划图的比例尺为1∶4000,图中一个氯化区的周长为15cm,面积为12cm2,则这个氯化区的实际周长和面积分别为多少?
4、在△ABC中,DE∥BC,E、D分别在AC、AB上,EC=2AE,则S△ADE∶S四边形DBCE的比为______
5、如图, △ABC中,DE∥FG∥BC,AD=DF=FB,则S△ADE:S四边形DFGE:S四边形FBCG=______
6.已知:梯形ABCD中,AD∥BC,AD=36,BC=60cm,延长两腰BA,CD交于点O,OF⊥BC,交AD于E,EF=32cm,则OF=_______.
7、ΔABC中,AE是角平分线,D是AB上的一点,CD交AE于G,∠ACD=∠B,且AC=2AD.则ΔACD∽Δ______.它们的相似比K =_______.
探究活动:
1、书本P115
已知△ABC,如图,如果要作与BC平行的直线把△ABC划分成两部分,使这两部分(三角形与四边形)的面积之比为1∶1该怎么作?如果要使划分成的两部分的面积之比为1∶2呢?如果要使划分成的两部分的面积之比为1∶n呢?(平行线等分线段、平行线分线段成比例定理)
2.阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a∶b).
=()2 =()3
练习
(1)下列几何体中,一定属于相似体的是( )
A.两个球体 B.两个锥体 C.两个圆柱体D.两个长方体
(2)请归纳出相似体的三条主要性质:
①相似体的一切对应线段(或弧)长的比等于______;
②相似体表面积的比等于__ ____;
③相似体体积比等于___ .
(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)
设他的体重为x千克,根据题意得=()3
解得x=60.75(千克)
三、小结
四、作业:见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 6 页)登陆21世纪教育 助您教考全无忧
4.2相似三角形
教学目标:
1.了解相似三角形的概念,会表示两个三角形相似.
2.能运用相似三角形的概念判断两个三角形相似.
3.理解“相似三角形的对应角相等,对应边成比例”的性质.
重点和难点:
1.本节教学的重点是相似三角形的概念
2.在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点.
知识要点:
1、对应角相等,对应边成比例的两个三角形叫做相似三角形.
2、相似三角形的对应角相等,对应边成比例.
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)
重要方法:
1、全等三角形是相似三角形的特殊情况,它的相似比是1.
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角.
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上.
教学过程
一.创设情境,导入新课
1.课件出示:①国旗上的☆,②同一底片不同尺寸的照片.以上图形之间可以通过怎样的图形变换得到?
2.经过相似变换后得到的像与原像称为相似图形.那么将一个三角形作相似变换后所得的像与原像称为相似三角形
二.合作学习,探索新知
1.合作学习
如图1,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点A、B、C).
问题讨论1:△A′B′C′与△ABC对应角之间有什么关系?
问题讨论2:△A′B′C′与△ABC对应边之间有什么关系?
学生相互比较得到结论:对应角相等,对应边成比例.
2.由合作学习定义相似三角形的概念
(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形
(2)表示:相似用符号“∽”来表示,读作“相似于”
如△A′B′C′与△ABC相似,记做“△A′B′C′∽△ABC” .
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上
(3)定义的几何语言表述:
∵∠A′=∠A,∠B′=∠B,∠C′=∠C,==
∴△A′B′C′∽△ABC
3.结合定义探求性质
(1)性质:相似三角形的对应角相等,对应边成比例
(由学生根据定义得出,理解定义的双重性,既可以用来判定两个三角形相似,同时,其本身又是三角形相似的一个性质)
(2)相似比(相似系数):相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)
注意:求两个相似三角形的相似比,应注意这两个三角形的前后顺序.
如图,△A′B′C′与△ABC的相似比为(k),△ABC与△A′B′C′的相似比为2()
4.问题探究:
问题一:两个直角三角形一定相似吗?为什么?
问题二:两个等腰三角形一定相似吗?为什么?
问题三:两个等腰直角三角形一定相似吗?为什么?
问题四:两个等边三角形一定相似吗?为什么?
问题五:两个全等三角形一定相似吗?为什么?变形:相似比为1的两个三角形全等吗?
问题六:如果两个全等三角形中的一个与第三个三角形相似,那么这两个全等三角形的另一个也与第三个三角形相似吗?为什么?
(有学生同桌或小组合作讨论,说明原因或举反例说明)
提示说明:本节课要说明两个三角形相似,应结合定义说明理由,也就是说要同时满足对应角相等,对应边成比例;但要说明不相似,则只要否定其中一个条件即可.
5.课堂练习:完成课本“做一做”
分析订正时可作如下启发:要写出△ADE与△ABC的对应角与对应边成比例的比例式,关键在于找出这两个三角形对应的边与角,因此,也只需找出相对应的顶点字母即可
三.学以致用,体验成功
1.讲解例1:
已知:如图2,D、E分别是AB、AC边的中点,求证:△ADE∽△ABC
分析:要说明△ADE∽△ABC,根据三角形相似的定义,应说明这两个
三角形的三个对应角对应相等,三条边对应成比例.
证明:∵D,E分别是AB,AC的中点,
∴DE∥BC,DE=BC,
∴∠ADE=∠B,∠AED=∠C
在△ADE和△ABC中
∠ADE=∠B
∠AED=∠C
∠A=∠A
===
△ADE∽△ABC(相似三角形的定义)
说明:根据定义说明两个三角形相似,必须说明这两个三角形同时满足对应角相等,对应边成比例.缺一不可.
2.讲解例2:
如图,D、E分别是△ABC的AB,AC边上的点,△ABC∽△ADE.已知AD∶DB=1∶2,BC=9cm,求DE的长.
分析:由于△ABC∽△ADE,并且DE与BC是一对对应边,因此,
要求DE的长,只要知道BC的长(已知)与这两个三角形的
相似比即可.
由学生口答过程,教师板书示范,并启发学生如何去分析问题,
解决问题.
四.巩固应用,拓展延伸
1、完成课本“课内练习”P1051、2、3
2.完成课本作业题P105~1061、2、3、4、5、6
3.如图,有一块呈三角形形状的草坪,其中一边的长是20cm.在这个草坪的示意图上,这条边长为5cm,其他两边的长度都为3.5cm.求该草坪其他两边的实际长度.
(可根据学生的实际情况选择完成)
五.归纳小结,反思提高
试谈谈通过本节课的学习,你有哪些收获与感想
六.布置作业
作业本
EMBED Flash.Movie
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
3.1圆(2)
教学目标:
知识目标:
1、通过问题的解决过程,使学生明确三角形的外接圆、三角形的外心、圆的内接三角形的概念,理解“不在同一直线上的三点确定一个圆”。
2、使学生能熟练掌握应用尺规“过不在同一直线上三点作圆”的方法。
3、向学生渗透转化、分类讨论等数学思想方法,为今后继续进一步学习数学打下基础。
能力目标:
1、通过学生自己动手作图,在动手参与的过程中探索、发现科学知识,进一步提高学生动手做的积极性。
2、提高学生应用数学知识解决生活中实际问题的能力。
情感目标:
1、增强学生的数学应用意识,提高学生学习数学的兴趣和积极性。
2、培养学生树立良好的创新意识、养成永无止境的科学探索精神。
教学重点:过不在一直线上的三点作圆的方法
教学难点:如何确定圆的思维过程
教学过程:
一:创设情境、提出问题
投影片出示问题:(破镜重圆)
现有一块打碎的圆形玻璃镜子残片,想重新去玻璃店配一块同样大小的圆形玻璃镜子,请问怎样去配制呢?
思考:如何解决这一实际问题?下面我们共同探寻解决这一问题的办法
二、实践活动,探究新知
探究①:过一个已知点A能否作圆?如果能,可以作几个? (让学生动手去完成)
学生讨论并发现:过点A所作圆的圆心在哪儿(圆心不定)?半径多大(半径不定)?可以作几个这样的圆(无数个)?
探究②:过已知两点A、B能否作圆?如果能,可以作几个? 圆心在哪里?(学生动手去完成)
学生继续讨论并发现:它们的圆心到A、B两点的距离怎样?能用式子表示吗(OA=OB) 圆心在哪里(在直线AB的垂直平分线上)?过点A、B两点的圆有几个(无数个)?
探究③:过同一平面内三个点A、B、C是否可以作圆?的情况会怎样呢
分两种情况研究:
(一)求作一个圆,使它经过不在一直线上三点A、B、C,
已知:不在一直线上三点A、B、C,求作一个圆,使它同时经过点A、B、C。(学生口述作法,教师示范作图过程)
学生讨论并发现:这样一共可作几个圆(一个)?圆心在哪里(线段AB、AC、BC的垂直平分线的交点)?到A、B、C三点的距离怎样?(OA=OB=OC)
(二)过在一直线上的三点A、B、C可以作几个圆?(不能作出)
发现结论:由上可知,过一点可作无数个圆,过已知两点可以作无数个圆,过不在同一直线上的三点可以作一个圆,并且只能作一个圆。
定理:过不在同一直线上的三点确定一个圆
强调:(1)“不在同一直线上”这个条件不可忽略,只有当三个点不在同一直线上才能确定一个圆。
(2)“确定”一词理解为“有且只有”
由上可知,经过三角形的三个顶点可以做一个圆。
因此三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,它是三角形三条边的垂直平分线的交点,这个三角形叫做圆的内接三角形。
(1)“接“是说明三角形的顶点和圆的关系,即圆经过三角形的各顶点;
(2)而“内“、”外“是相对的概念,以一个图形为准明说明另一个图形在它的里面或外面,如”三角形的外接圆“是以三角形为准,说明圆在三角形的外面。
如图:⊙O称为△ABC的外接圆,△ABC称为⊙O的内接三角形,O为三角形ABC的外心。
三、应用新知
1、解决引例的问题(让学生口述解决的办法)
①在残片上任取三点A、B、C,连结AB、AC
②分别作AB、AC的垂直平分线,并交于一点O,O为圆心。
③连结OA,以OA为半径画圆即可。
2、精心的判一判
(1)过两点可以作无数个圆。( )
(2)经过三点一定可以做一个圆。( )
(3)顶点都在圆上的三角形叫做圆的外接三角形。( )
(4)任意一个三角形一定有一个外接圆,并且只有一个外接圆。( )
(5)任意一个圆一定有一个内接三角形,并且只有一个内接三角形。( )
(6)三角形的外心就是这个三角形两边垂直平分线的交点。( )
(7)三角形的外心到三边的距离相等。( )
3、仔细的填一填:
如图:⊙O是△ABC的 ______ 圆,△ABC是⊙O的 ________ 三角形,O是△ABC的 ______ 心,它是 __________ 线的交点,到三角形 __________ 距离相等。
4、认真做一做:作出下列三角形的外接圆,并比较这三个三角形的外心的位置,你得到什么结论?
发现:
(1)锐角三角形的外心在三角形的内部;
(2)钝角三角形的外心在三角形的外部;
(3)直角三角形的外心在斜边的中点处。
四、深化与延伸
1、如图,已知在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,则△ABC的面积为 。
2、如图,在等腰三角形ABC中,AB=AC=13cm,BC=10cm,则△ABC的外接圆的半径为 。
五、课堂小结
通过这节课你学到哪些知识?还有哪些困惑?
六、作业:
1、作业本
2、动手做一做
(1) 怎样找出一个圆形纸片的圆心?(请你想出尽可能多的方法)
(2)过四个点能否作一个圆
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
3.4圆周角(1)
教学目标:1、理解圆周叫得概念
2、经历探索圆周角定理的过程
3、掌握圆周角定理和它的推论
4、会运用圆周角定理及其推论解决简单的几何问题
教学重点:圆周角定理
教学难点:圆周角定理的证明要分三种情况讨论,有一定难度。
教学设计:
1、 类比联想,引入新课
1、如图,已知∠AOB=80°,
求弧AB的度数;
②延长AO交⊙O于点C,连结CB,求∠ACB的度数。
2、提问:∠ACB是圆心角吗?(不是)
教师指出:我们把这样的角叫做圆周角,你能模仿圆心角的定义给出圆周角的定义吗?
板书:圆周角的定义:顶点在圆上,两边和圆相交的角叫做圆周角,
练习:(1)练习:判别下列各图形中的角是不是圆周角,并说明理由。
(2)、找出图中所有的圆周角
二、探索圆周角和圆心角的关系
我们学习了与圆有关的两种典型的角 –圆心角和圆周角,在同圆中同弧所对的圆周角和圆心角有什么关系呢?
问题1:请同学们任意画一个圆,并选中一段弧,画出这条弧所对的圆心角和圆周角。
问题2、同弧所对的圆心角和圆周角各有几个? (圆心角一个,圆周角无数个)
问题3、请你猜测同弧所对的圆周角和圆心角大小由什么关系?(∠BAC=∠BOC)
问题4、你能证明你的结论?
学生讨论并寻求证明思路,有困难时老师可以适当点拨。
分三类情况讨论、证明;
第一种情况:圆心在∠BAC的一边上:
∵OA=OC
∴∠BAC=∠C
∵∠BOC是△AOC的外角
∴∠BOC=∠C+∠BAC=2∠BAC
∴∠BAC=∠BOC
第二种情况:当圆心O在∠BAC的外部时
连结A0 并延长,交交⊙O于点D,利用(1)的结果,有∠BAD=∠BOD,
∠DAC=∠DOC,
∴∠BAD+∠DAC=(∠BOD+∠DOC)
即∠BAC=∠BOC
第三种情况:当圆心O在在∠BAC的内部时
连结A0 并延长,交交⊙O于点D,利用(1)的结果,有∠BAD=∠BOD,
∠DAC=∠DOC,
∴∠DAC-∠DAB= (∠DOC-∠DOB)
即∠BAC= ∠BOC
完成证明过程后,把命题改为定理 即
圆周角定理:同弧所对的圆周角等于圆心角的一半。
由于圆心角的度数等于它所对的弧的度数,因此:
(板书)推论1:圆周角的度数等于它所对的弧的度数的一半
通过定理得证明,要使学生明白,要不要分不同情况来证明,主要是看各种情况的证明方法是否相同,相同者不需分,不相同者必须对各种不同情况逐个加以证明,并且做到不重复,不遗漏。
3、 巩固应用
(一)1、已知一条弧所对的圆周角等于50°,则这条弧所对的圆心角为 度,这条弧的度数为 度。
2、已知一条弧的度数为40°,则这条弧所对的圆心角为 度,所对的圆周角为 度。
3、一条弧所对的圆心角的度数为96°,则这条弧的度数为 度,这条弧所对的圆周角
为 度。
小结:圆心角、圆周角、弧的度数关系
4、一条特殊的弧---半圆,它所对的圆周角等于 度。
5、如果一条弧所对的圆周角的度数为90°,那么这条弧所对的圆心角为 度。
由4、5两题得出:
推论2 半圆(直径)所对的圆周角是直角 90°的圆周角所对的弦是直径。
6、如图,已知∠AOB=100°,则∠ACB的度数为 度。
7、一条弦把圆周分成1:2两部分,则弦所对的圆周角的度数为 。(分两种情况)
(二)简单应用
例1:如图;四边形ABCD的四个顶点在⊙O上。
求证;∠B+∠D = 180°
分析:∠B和∠D所对的弧分别是什么? 这两条弧有什么关系?
学生探索 然后交流表达,教师板书示范。
练习:已知:OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC
求证:∠ACB= 2 ∠BAC
证明:
四、课堂总结:这节课我们都学了哪些内容?
五、作业:
1、作业本
2、只给你一把三角尺,你能找出一个圆的圆心吗
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
4.1比例线段(2)
教学目标:
1.了解两条线段的比和比例线段的概念;
2.能根据条件写出比例线段;
3.回运用比例线段解决简单的实际问题。
教学重点、难点
教学重点:比例线段的概念。
教学难点:例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点。
知识要点:
1.两条线段的长度的比叫做两条线段的比。
2.四条线段a、b、c、d中,如果a与b的比等于c与d的比,即=,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
重要提示:
1.用方程思想寻找几何图形中四条线段成比例是常用方法。
2.四条线段成比例可以解决一些实际问题,如地图上的某两地之间的距离。
教学过程
一、复习引入
1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项。
2.说出比例的基本性质。由ad=bc可推出哪些比例式?
3.练习:(1)若3x=4y,求、、的值。
(2)若=,求的值。
(3)x:y:z=2:3:4,求的值。
(4)已知a:b:c=3:4:5,且2a+3b-4c=-1,求2a-3b+4c的值。
(5)已知线段AB=15cm,CD=20cm。求AB:CD的值。
(6)完成P98网格问题。(问题建立在相似变换基础上,可复习相似变换)
二、设置问题,探究新课
如何定义两线段的比呢?什么是比例线段?
在同一长度单位下,a,b,两线段长度的比叫做这两线段的比。记为a:b或
注意:(1)两线段是几何图形,可用它的长度比来确定;
(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关。
(3)表示方式与数字的比表示类同,但它也可以表示为AB:CD.
比例线段:一般地,四条线段a、b、c、d中,如果a与b的比等于c与d比,即=,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段)
完成P99做一做
三、模仿与应用
例题:已知线段a=10mm,b=6cm,c=2cm,d=3cm.问:这四条线段是否成比例?为什么
答:这四条线段成比例
∵a=10mm=1cm
∴=,==
∴=,即线段a、c、d、b是成比例线段。
想一想:是否还可以写出其他几组成比例的线段.
反思:判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
例3如图,在Rt△ABC中,CD是斜边AB上的高。请找出一组比例线段,并说明理由。
分析:(1)根据比例基本性质,要判断四条线段是否成比例,
只要采取什么方法(看其中两条线段的乘积是否等于另两条线段的乘积)
(2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来?
(3)根据三角形的面积公式,你能得到一个怎样的等式?根据所得
的等式可以写出怎样的比例式。
例4如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少km?
注意:要设实际距离为s;求角度时要注意方位。
解:从图上量出高雄市到基隆市的距离约35mm,设实际距离为s,则
=315000000(mm)
即s=315(km) 答:
如果量得图中,我们还能确定基隆市在高雄市的北偏东28的315km处。
课堂练习:P99课内练习、P100作业题(学生板演)
补充练习:
1.已知线段a=30mm,b=2cm,c=cm,d=12mm,试判断a、b、c、d是否成比例线段。
2.已知a、b、c、d是比例线段,其中a=6cm,b=8cm,c=24cm,则线段d的长度是多上?
3.已知三角形三条边之比为a:b:c=2:3:4,三角形的周长为18cm,求各边的长。
4.已知AB两地的实际距离是60km,画在图上的距离A1B1是6cm,求这幅图的比例尺。
5.现在有一棵很高的古树,欲测出它的高度,但又不能爬到树尖上去直接测量,你有什么好的方法吗?
类题:相同时刻的物高与影长成比例。如果一电视塔在地面上影长为180m,同一时刻高为2m的竹竿的影长为3m,那么电视塔的高是多少?
6.如图,已知AD,CE是△ABC中BC、AB上的高线,求证:AD:CE=AB:BC
7.如图,在Rt△ABC中,CD⊥AB,DE⊥AC,请找出一组比例线段,并说明理由。
8.如图,已知,求
9.育美中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m,宽为12m。
(1)在比例尺为1:100的平面图上,这个矩形花坛的长和宽各是多少?
(2)在平面图上,这个花坛的长和宽的比是多少?
(3)花坛长和宽实际比是多少?
(4)你发现这两个比有什么关系?
四、课堂小结
1.两条线段的比及比例线段的概念;
2.方程思想的体现;
3.比例线段在实际问题中的应用。
五、作业:见作业本
六、教后感
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
4.4相似三角形的性质及其应用(2)
教学目标:
1、能运用相似三角形的性质解决一些简单的实际问题.
2、进一步检验数学的应用价值.
重点与难点:
1、本节教学的重点是运用相似三角形的性质解决简单的实际问题.
2、由于学生缺乏一定的生活经验,让他们设计测量树高的方案有一定的难度,所以例3的方案设计是本节教学的难点.
知识要点:
1、若物体的高度和宽度不能被直接测量,则一般思路是根据题意和所求,建立相关的相似三角形的模型,然后根据相似三角形的性质以及比例关系可求得.
2、在同一时刻两个物体的高度和它的影长是成比例的.
重要方法:
1、在测量物体的高时,物体与水平面是垂直的.
2、在测量宽度时,可采用下面的方法.
教学过程:
一、复习提问
我们已经学习相似三角形的性质有哪些?
1、相似三角形对应角相等。
∵△A′B′C′∽△ABC ∴ ∠A= ∠A′ , ∠B= ∠B′ ∠C= ∠C′
2、相似三角形对应边成比例。
∵△ABC∽△ABC ∴==
3、相似三角形的周长之比等于相似比;
4、相似三角形的面积之比等于相似比的平方。
5、相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.
思考:你能够将上面生活中的问题
转化为数学问题吗?
二、例题讲解
1、校园里有一棵大铁树,要测量树的高度,你有什么方法?
把一小镜子放在离树(AB)8米的点E处,然后沿着
直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,
再用皮尺量得DE=2.8m,观察者目高CD=1.6m。
这时树高多少?你能解决这个问题吗?
把长为2.40m的标杆CD直立在地面上,量出树的影长为2.80m,标杆的影长为1.47m。这时树高多少?你能解决这个问题吗?
分别根据上述两种不同方法求出树高(精确到0.1m)
请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗?
2、如图,屋架跨度的一半OP=5m,高度OQ=2. 25 m。现要在屋顶上开一个天窗,天窗高度 AC=1. 20m,AB在水平位置。求AB的长度。(结果保留3个有效数字)
三、练一练
1、课内练习
步枪在瞄准时的示意图如图,从眼睛到准星的距离OE为80cm,步枪上准星宽度AB为2mm,目标的正面宽度CD为50cm,求眼睛到目标的距离OF。
2、反馈练习
(1)某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高 4米 .
(2)铁道的栏杆的短臂为OA=1米,
长臂OB=10米,短臂端下降
AC=0.6米,则长臂端上升BD= 6 米。
3.(深圳市中考题)如图:小明在打网球时,要使球恰好能打过网 ,而且落在离网5米的位置上,则拍击球的高度h应为( A ) 。
A、2.7米 B、1.8米 C、0.9米 D、 6米
思考题:
1、如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x。
分析:如图,要想求厚度x,根据条件可知,首先得求出内孔
直径AB。而在图中可构造出相似形,通过相似形的性质,从而
求出AB的长度。
解:∵ OA:OC=OB:OD=n 且∠AOB=∠COD
∴△AOB∽△COD
∵ OA:OC=AB:CD=n
又∵CD=b
∴AB=CD·n =nb
∴x==
2、如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。
设正方形PQMN的边长为x毫米。
因为PN∥BC,所以△APN∽ △ABC
所以=
因此=得 x=48(毫米)。
答:这个正方形零件的边长是48毫米。
四、课堂小结
1、相似三角形的应用主要有如下两个方面
(1)测高(不能直接使用皮尺或刻度尺量的)
(2)测距(不能直接测量的两点间的距离)
2、测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决.
3、测距的方法
测量不能到达两点间的距离,常构造相似三角形求解.
4、解决实际问题时(如测高、测距),
一般有以下步骤:①审题 ②构建图形 ③利用相似解决问题
五、布置作业
1、见作业本2
2、书本P117 作业题1、2、3、4、5
3、课外活动
设计题:以4~6人为一组举行一次应用相似三角形的有关知识进行测量实践的活动.每组测量的目标、内容和方法均可以自选.在完成实践活动后,以组为单位写一份测量实践报告,在班内进行交流.
C
B
D
O
A
F
D
C
O
B
A
E
B
A
准星
Q
P
O
C
B
A
D
C
B
A
B
A
C
D
EMBED Flash.Movie
5m
10m
0.9m
h
O
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 4 页)登陆21世纪教育 助您教考全无忧
1.3反比例函数的应用 (1)
教学目标:
1、 经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想。
2、 会综合运用反比例函数的解析式,函数的图像以及性质解决实际问题。
3、 体验数形结合的思想。
教学重点、难点:运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。
教学设计:
一、 忆一忆
1、 什么是反比例函数?它的图像是什么?具有哪些性质?
2、 小明家离学校3600米,他骑自行车的速度是x(米/分)与时间y(分)之间的关系式是
,若他每分钟骑450米,需 分钟到达学校。
二、想一想
设△ABC中BC的边长为x(cm) ,BC 边上的高AD为y(cm),△ABC的面积为常数。已知y关于x 的函数图像过点(3,4)。
(1) 求y关于x的函数解析式和△ABC的面积。
(2) 画出函数的图像,并利用图像,求当时y 的值。
小结:(1)根据实际问题中变量之间的数量关系建立函数解析式。
(3) 根据给定的自变量的值或范围求函数的值或范围,可以应用函数的性质,也可以应用函数的图像;根据已知函数的值或范围求相应的自变量的值或范围,可以应用函数的性质和图像,也可以把问题转化为解方程或不等式。
三、练一练
设每名工人一天能做某种型号的工艺品x 个。若某工艺厂每天要生产这种工艺品60个,则需工人y名。
(1) 求y关于x的函数解析式。
(2) 若一名工人每天能做的工艺品个数最少6个,最多8个,估计该工艺品厂每天需要做这种工艺品的工人多少人?
四、说一说:
请你说一说本节课自己的收获并对自己参与学习的程度做出简单的评价.
五、作业:见作业本
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品教案·第 1 页 (共 2 页)