八下第一章 第2节 电生磁 举一反三(含解析)

文档属性

名称 八下第一章 第2节 电生磁 举一反三(含解析)
格式 zip
文件大小 5.8MB
资源类型 试卷
版本资源 浙教版
科目 科学
更新时间 2024-01-28 22:35:18

文档简介

中小学教育资源及组卷应用平台
第2节 电生磁
考点一、直线电流的磁场
(一)奥斯特实验
任何导线中有电流通过时,其周围空间都产生磁场,这种现象叫做电流的磁效应。奥斯特实验揭示了电现象与磁现象不是孤立的,而是密切联系的,奥斯特实验是第一个揭示电和磁联系的实验。
(1)在小磁针的上方放置一根与小磁针平行的直导线,当给直导线通电时,可观察到小磁针发生了偏转(如图所示)。
结论:小磁针受到了力的作用,通电导线的周围存在磁场。
(2)电路断电后,小磁针不发生偏转(如图乙所示)。
(3)改变电流的方向,观察到小磁针的偏转方向发生改变,即偏转方向与第一次偏转方向相反(如图丙所示)。
结论:通电导线周围的磁场方向与电流的方向有关。
(二)直线电流的磁场分布特点
在有机玻璃板上穿一个孔,一根直导线垂直穿过小孔,在玻璃板上均匀地撒上一些细铁屑。 给直导线通电后,轻敲玻璃板,观察到细铁屑在直导线周围形成一个个同心圆(如图所示)。
结论:直线电流周围的磁感线分布规律是以直导线上各点为圆心的同心圆,这些同心圆在与直导线垂直的平面上,越靠近通电直导线,磁场越强,反之越弱。
①由于地磁场的存在,小磁针静止时南北指向,为使实验结果更明显,通电导线应沿南北方向放置。
②将磁场的分布规律
转换为铁屑的分布情况,这是转换法的应用。
典例1:(2023八下·兰溪期中)如图所示,在科学实验课上,方老师带领大家一起做奥斯特实验。方老师告诉同学们,为了让实验效果更加明显,建议大家将通电直导线沿   方向放置(选填“东西”或“南北”),此时直导线在小磁针处产生的磁场方向和放在该点小磁针的   极指向一致(选填“N”或“S”)。
【答案】南北;N
【解析】由于小磁针受到地磁场的作用,要指南北方向,为了观察到明显的偏转现象,应使电流产生磁场方向为东西方向,故应使把直导线南北放置。在磁场中,小磁针北极的指向即为该点的磁场方向。①磁场有方向,科学上把小磁针静止时北极所指的方向规定为其所处点的磁场方向。
②通电螺线管的磁极和电流方向之间的关系可以用右手螺旋定则(也叫安培定则)来判定。用右手握螺线管,让四指弯向螺线管中的电流方向,大拇指所指的那一端就是通电螺线管的北极。右手螺旋定则也可以用来判断直线电流的磁场方向,只是需让大拇指指向电流方向,四指弯曲的方向就是直线电流产生的磁场方向。
变式1:如图所示,在竖直放置的矩形通电线框中悬挂一个能自由转动的小磁针。当通以图中所示方向的电流时,小磁针N极将 (  )
A.转动90°,垂直指向纸里 B.转动90°,垂直指向纸外
C.转动180°,指向左边 D.静止不动,指向不变
【答案】A
【解析】①在磁场中某点放一个小磁针,当小磁针静止时N极所指的方向就是该点的磁场方向;
②右手握住导线,大拇指指向电流方向,此时弯曲的四指所指的方向就是磁场的环绕方向。
【解答】左边:右手握住直导线,大拇指指向上端,在导线的右侧四指的指尖向里,即该点的磁场方向与纸面垂直向里;
右边:右手握住直导线,大拇指指向下端,在导线的左侧侧四指的指尖向里,即该点的磁场方向与纸面垂直向里;综上所述,小磁针的N极应该向纸内转动90°。
变式2:如图所示是奥斯特实验的示意图,其中ab、cd为金属棒,支架其余部分为绝缘材料。a、b接上导线并通电,观察小磁针的偏转情况。
(1)此实验成功的条件之一是金属棒呈   (填“东西”或“南北”)方向放置。
(2)将导线分别从a、b移到c、d,电流大小、方向保持不变,小磁针的偏转方向   (填“改变”或“不变”)。
【答案】(1)南北(2)改变
【解析】(1)根据磁场方向的判断分析解答。
(2)磁场方向判断方法:用右手握住导线,大拇指的方向与电流一致,那么弯曲四指指向就是周围磁场的方向。位置不同,磁场方向不同,不能简单的由电流方向没有改变,就判断磁场方向没有改变。
【解答】(1)在导线中通入电流前,小磁针静止时沿南北方向。如果导线沿东西方向放置,那么通入电流后,在小磁针N极处的磁场方向与地磁方向相同,因此小磁针不会转动,则实验成功的条件之一是金属棒呈南北方向。
(2)小磁针相对导线的位置发生了改变,当导线位于ab时,小磁针位置的磁场方向垂直纸面向内,当导线位于cd时,小磁针位置的磁场方向垂直纸面向外,所以小磁针的偏转方向发生了改变。
变式3:(2023八下·黄岩期末)早在19世纪,安培对于地磁场的形成提出如下假设:地球的磁场是由围绕地轴的环形电流I引起的(如图甲)。小黄学习了电和磁的知识后,知道了通电直导线周围的磁场分布符合安培定则,那么环形电流内部的磁场是否也符合如图乙所示的安培定则呢?他展开了以下探究。
[建立猜想]环形电流内部的磁场可能也符合安培定则。
[实验过程]连接如图丙所示的电路(外部电路未画出)。
[实验现象]位于圆环中心的小磁针N极垂直纸面向里转动。
(1)小黄同学的探究实验中放置小磁针的作用是   。
(2)根据实验现象,小黄的结论   。
(3)根据安培提出的假设,则赤道这一通电圆环的电流方向为   。
【答案】(1)显示磁场的方向或者显示磁场的有无
(2)环形电流内部的磁场也符合安培定则
(3)B
【解析】(1)本实验中小磁针的作用是为了确定磁场的方向。
(2)根据实验现象分析。(3)根据安培定则确定环形电流的方向。
【解答】(1)小黄同学的探究实验中放置小磁针的作用是:显示磁场的方向或者显示磁场的有无。
(2)根据丙图可知,让弯曲的四指指尖向下,此时大拇指指向纸内,即磁场方向向纸内,则小磁针的N极转向纸内,因此小黄的结论:环形电流的磁场符合安培定则。
(3)根据安培提出的假设,环形电流的磁场符合安培定则,则赤道这一通电圆环的电流方向为B,因为只有B符合安培定则和地磁场的分布。
考点二、通电螺线管的磁场
(一)通电螺线管的有关实验
(1)实验一
①用导线绕成螺线管后通电,观察到能吸引大头针。说明通电螺线管周围存在磁场。
②在螺线管中插入一根铁棒或一枚铁钉,观察到通电螺线管能吸引更多大头针,说明插入铁芯后通电螺线管的磁性增强。产生此现象的原因是铁芯在磁场中被磁化后相当于一个磁体,通电螺线管产生的磁场与被磁化的铁芯的磁场叠加,产生了更强的磁场,吸引了更多的大头针。
(2)实验二
①在穿过螺线管的有机玻璃板上均匀地撒上铁屑,通电后轻敲玻璃板,观察铁屑的分布规律。
结论:通电螺线管周围的磁场与条形磁体的磁场很相似。
②改变电流方向,用小磁针探测螺线管的磁极,观察发现螺线管的磁极发生变化。
结论:通电螺线管的磁极跟螺线管中的电流方向有关,改变电流方向,螺线管的磁极会发生变化。
(二)通电螺线管磁场的有关性质
(1)特点:通电螺线管外部的磁场和条形磁体的磁场相似,螺线管的两端相当于条形磁体的两极。
(2)极性的判断:通电螺线管两端的极性与螺线管中的电流方向有关,它们的关系可以用右手螺旋定则(安培定则)来判定。
(三)右手螺旋定则(安培定则)
(1)通电螺线管的磁极与电流方向之间的关系可以用右手螺旋定则(也叫安培定则)来判定:用右手握螺线管,让四指弯向螺线管中的电流方向,大拇指所指的那一端就是通电螺线管的北极。
(2)直线电流周围磁场方向与电流方向之间的关系(用右手螺旋定则判定):用右手握住导线,让大拇指指向电流的方向,四指弯曲的方向就是直线电流产生的磁场方向。
(3)右手螺旋定则的说明
①决定通电螺线管磁极极性的根本因素是通电螺线管上电流的环绕方向,而不是通电螺线管上导线的绕法和电源正负极的接法。当两个螺线管上电流的环绕方向一致时,它们两端的磁极极性相同。
②在判断通电螺线管磁极极性时,四指的环绕方向必须跟螺线管上电流的环绕方向一致。
③N极和S极一定在通电螺线管的两端。
典例1:(2023八下·杭州月考)如图所示,条形磁铁置于水平桌面上,电磁铁右端固定并保持水平,且与条形磁铁在同一平面和相同高度。当电路中开关S由断开到闭合时,条形磁铁一直保持静止,下列说法正确的是(  )
A.开关S闭合后,电磁铁左端是S极
B.开关S闭合后,条形磁铁受到摩擦力的方向向左
C.开关S闭合后,滑片P向右移动时,条形磁铁受到的摩擦力逐渐减小
D.开关S断开时,条形磁铁与电磁铁之间没有力的作用
【答案】C
【解析】电路中开关S断开时,电磁铁没有磁性,磁铁对铁芯有力的作用;闭合开关后,根据右手螺旋定则可判断电磁铁的左边是N极,右边是S极,与条形磁铁的作用是同名磁极互相排斥;滑片P向右移动,电阻变大,电流变小,电磁铁磁性减小。
【解答】A.开关S闭合后,电磁铁左端是N极,A错误;
B.开关S闭合后,电磁铁左端是N极,与条形磁铁同名磁极互相排斥,所以条形磁铁被向左推,它受到的摩擦力方向向右,B错误;
C.开关闭合后,滑片P向右移动,电磁铁磁性减小,对条形磁铁的推力减小,所以条形磁铁受到的摩擦力也减小(因为条形磁铁一直保持静止,所以条形磁铁受到的摩擦力和推力是一对平衡力。平衡力大小相等,C正确;
D.开关S断开时,条形磁铁与电磁铁之间有力的作用,D错误;
变式1:(2023八下·杭州期末)如图所示,一根弹簧下端连着一个条形磁铁,条形磁铁的下端为N极。条形磁铁下方有一电磁铁。闭合开关后(  )
A.电磁铁左侧小磁针的N极向上偏转
B.若去掉螺线管中的铁芯,弹簧的长度会变短
C.当滑动变阻器的滑片向右滑动时,弹簧长度会变长
D.若调换电源的正负极,小磁针的指向会发生改变
【答案】D
【解析】A.根据安培定则判断电磁铁的磁极方向,再根据磁极之间的相互作用规律确定小磁针的指向;
B.首先分析去掉铁芯后电磁铁的磁场强弱变化,再确定条形磁体受到磁力的变化,最后确定弹簧长度的变化;
C.根据滑片移动确定电流大小变化,再确定电磁铁的磁场强弱变化,最后分析弹簧的长度变化;
D.电磁铁的磁极方向与电流方向有关,据此分析判断。
【解答】A.根据图片可知,线圈上电流方向向右。根据安培定则可知,电磁铁的上端为N极。根据“异名磁极相互排斥”可知,小磁针的N极向下偏转,故A错误;
B.若去掉螺线管中的铁芯,电磁铁的磁场减弱,则条形磁铁受到的排斥力减小,则弹簧受到的拉力变大,即弹簧的长度变大,故B错误;
C.当滑动变阻器的滑片向右滑动时,变阻器的阻值减小,则通过电磁铁的电流变大,那么电磁铁的磁场变强,那么条形磁铁受到的排斥力变大,则弹簧受到的拉力减小,即长度变小,故C错误;
D.若调换电源的正负极,则通过电磁铁的电流方向改变,那么电磁铁的磁场方向发生改变,则小磁针的指向会发生改变,故D正确。
变式2:(2023八下·宁波期末)如图所示闭合开关S,当滑片P向b端移动时,电磁铁的磁性   (选填“增强”或“变弱”),条形磁体对水平地面的压力   (选填“增大”、或“减小”)。
【答案】减弱;减小
【解析】①根据滑片的移动方向确定变阻器的阻值变化,从而确定通过电磁铁的电流大小变化,进而确定电磁铁的磁性强弱变化;
②首先根据安培定则判断电磁铁的极性,然后根据磁极之间的相互作用规律确定条形磁铁受到磁力的方向,从而得到平衡关系式,最后根据磁力的变化确定条形磁铁对地面的压力变化。
【解答】(1)闭合开关S,变阻器的滑片向b端移动时,变阻器的阻值增大,根据R总=R0+R可知,此时总电阻变大而总电流减小,那么电磁铁的磁性减弱。
(2)线圈上电流方向向左,根据安培定则可知,电磁铁的下端为N极。根据“同名磁极相互排斥”可知,条形磁铁受到向下的排斥力,即地面受到的压力F=G+F排斥。当滑片向b端移动时,排斥力减小,则对水平地面的压力减小。
变式3:如图所示,弹簧测力计甲、乙的挂钩上分别挂着一个条形磁体和一个铁块,开关闭合后,当滑动变阻器的滑片向右移动时,弹簧测力计甲的示数   ,弹簧测力计乙的示数   (均填“变大”“变小”或“不变”)。
【答案】变小;变大
【解析】根据安培定则判断电磁铁的磁极方向,再根据磁极之间的相互作用规律判断悬挂的物体受到磁力的方向。当变阻器的滑片向右移动时,根据电流变化确定它们受到磁力的变化,弄清弹力的变化,最终确定弹簧的长度变化。
【解答】根据图片可知,以左端为例,线圈上电流方向向右。右手握住螺线管,弯曲的四指指尖向上,则上端为N极,下端为S极。那么甲下面的条形磁铁受到向上的排斥力。当滑片向右移动时,变阻器的阻值减小,而电流增大,那么磁场变强,排斥力增大,因此甲受到的拉力减小。
同理,右端上面为S极,则对铁块产生向下的吸引力。当滑片向右移动时,变阻器的阻值减小,而电流增大,那么磁场变强,吸引力增大,因此乙测力计的示数变大。
考点三、电磁铁
(一)电磁铁的构造:螺线管和铁芯。
(二)电磁铁的原理:电磁铁是利用电流的磁效应原理工作的。将软铁棒插入螺线管内部,当线圈通上电流时,螺线管产生磁性,线圈内部的磁场使软铁棒磁化为磁铁,使磁性增强;当电流切断时,线圈及软铁棒的磁性消失。
(三)实验探究:影响电磁铁磁性强弱的因素
铁芯能使螺线管的磁性大大增强,那么电磁铁的磁性除了与是否带铁芯有关之外,还跟哪些因素有关 下面通过实验进行探究。
(1)提出问题:影响电磁铁磁性强弱的因素有哪些
(2)建立猜想:影响电磁铁的磁性强弱的因素有电流的大小、线圈匝数的多少、螺线管的长度、导线的粗细....
(3)设计实验
实验方法:
①控制变量法:研究电磁铁磁性强弱与电流大小的关系时,控制螺线管长度、导线的粗细、线圈的匝数不变,通过移动滑动变阻器的滑片改变线圈中的电流大小,研究当电流逐渐变大时,电磁铁的磁性如何变化。
研究电磁铁的磁性强弱与线圈匝数的关系时,控制电路中的电流不变,接入不同匝数的电磁铁。
②转换法:通过电磁铁吸引大头针的数目来体现电磁铁的磁性强弱。
(4)进行实验
①用一根导线在一枚铁钉上缠绕几匝制作一个电磁铁。
②将制作的电磁铁、滑动变阻器及电流表、开关电源连人电路中,如图所示
③闭合开关,移动滑动变阻器的滑片,使电流表的示数增大,观察电磁铁吸引大头针的数目有什么变化,将观察到的实验现象记录在表格中。
④将两个线圈匝数不同的电磁铁串联在电路中,如图所示,观察两个电磁铁吸引大头针的数目有什么不同,将观察到的实验现象记录在表格中。
⑤整理好实验器材。
⑥归纳分析:图左所示实验中,通过电磁铁的电流越大,吸引大头针的数目越多,说明电磁铁的磁性越强;图右所示实验中,线圈匝数多的B电磁铁吸引大头针的数目多,说明B电磁铁比A电磁铁的磁性强。
(5)实验结论:线圈匝数一定时,通过线圈的电流越大,电磁铁的磁性越强;在电流一定时,线圈匝数越多,电磁铁的磁性越强。
典例1:(2023八下·椒江期末)在”探究电磁铁磁性强弱的影响因素”实验中,小科用细线将电磁铁M悬挂在铁架台上,将条形磁铁放在电子台秤上,如图所示。实验步骤如下:
①断开开关S,将电磁铁1、3接线柱按图示接入电路:
②按下台秤上的清零按钮使台秤示数为零。将滑片移到最大阻值处,闭合开关S,多次移动滑片位置,读出相应的电流值和台秤示数,并记录在表格中。
③断开开关S,将接线柱1改接至2,重复步骤②。
④分析数据,得出结论。
接线柱 实验次数 1 2 3
1、3 电流/A 0.34 0.40 0.44
台秤示数/N -0.81 -0.82 -0.84
2、3 电流/A 0.34 0.40 0.44
台秤示数/N -0.75 -0.76 -0.78
(1)小科通过   来推断电磁铁磁性强弱
(2)分析表中数据可得出的实验结论是   。
(3)滑动变阻器除了保护电路外,还具有   的作用。
(4)若想要使台秤的压力值显示为正,可进行的操作是    (写出一种即可)
【答案】(1)台秤示数大小
(2)电磁铁磁性强弱与电流大小和线圈匝数有关,电流越大,线圈匝数越多,磁性越强
(3)改变电流大小和控制电流相同
(4)对调电源正负极、对调条形磁铁南北极、改变线圈缠绕方式、互换1、3或2、3接线柱等
【解析】(1)台秤上的条形磁铁受到电磁铁的吸引力,从而时台秤的示数发生改变。台秤示数的变化量越大,则说明电磁铁的磁场越强。
(2)根据表格数据分析电磁铁的磁场强弱与电流大小和线圈匝数的关系;
(3)根据变阻器的工作原理解答;
(4)要使台秤的压力值为正,就要改变电磁铁的磁场方向,而电流方向和绕线方式会改变磁场方向,据此分析解答。
【解答】(1)小科通过台秤示数大小来推断电磁铁磁性强弱;
(2)第一行数据可知,当线圈匝数相同时,电流越大,台秤示数变化越大,说明电磁铁的磁场越强;
根据第3列数据可知,当电流相同时,线圈匝数越多,则台秤示数变化越大,说明电磁铁的磁场越强。
那么得到结论:电磁铁磁性强弱与电流大小和线圈匝数有关,电流越大,线圈匝数越多,磁性越强。
(3)滑动变阻器除了保护电路外,还具有改变电流大小和控制电流相同的作用。
(4)若想要使台秤的压力值显示为正,可进行的操作是:
①对调电源正负极,从而改变电磁铁的电流方向,进而改变电磁铁的磁场方向;
②对调条形磁铁南北极,从而改变磁力的方向;
③改变线圈缠绕方式,从而改变电磁铁的磁场方向;
④互换1、3或2、3,改变电流方向,从而改变电磁铁的磁场方向。
变式1:(2023八下·仙居期末)小科用漆包线(表面涂有绝缘漆的导线)绕在铁钉上做成了有五个接线柱o、a、b、c、d的电磁铁,并将它与电源、电流表、滑动变阻器、开关、导线组成了如图所示的电路,用吸引大头针的数量来判断电磁铁磁性的强弱。
(1)为探究电磁铁磁性强弱与线圈匝数的关系,请你帮助小科完成实验方案的设计。
(2)利用该实验装置还可以探究   。
【答案】(1)①先将接线柱o、a连入电路,闭合开关,移动滑动变阻器滑片P到某一位置,用电磁铁的一端吸引大头针,同时观察并记录电流表的示数I和大头针的数量n1。
②断开开关,将接线柱o、b连入电路,闭合开关,移动滑动变阻器滑片P,使电流表的示数I保持不变,用电磁铁的一端吸引大头针,观察并记录大头针的数量n2。
③仿照上一步骤,分别连入o、c和o、d,记录大头针的数量。
④比较各组实验中吸引的大头针数量,得出结论。
(2)电磁铁磁性强弱与电流大小的关系
【解析】(1)探究电磁铁的磁场强弱与线圈匝数的关系时,需要控制通过电磁铁的电流相等,只改变线圈匝数,通过观察吸引大头针的数量判断磁场强弱,据此设计实验。
(2)探究电磁铁的磁场强弱与电流大小的关系时,需要控制线圈匝数相等,只改变通过电磁铁的电流,即只需将线头连接在a点,通过调节滑动变阻器滑片的位置改变电流,并记录吸引大头针的数量即可。
变式2:(2023八下·婺城期末)小科为验证“影响电磁铁磁性强弱的因素”,设计了如图实验,右侧底端固定有小磁铁的指针能绕转轴O转动。
实验1:将变阻器滑片P移至最上端,闭合开关S至a处,再将滑片P逐渐向下移动,观察指针示数的变化。
实验2:先将变滑片P移至最上端,闭合开关S至a处,记下指针示数和电流表示数;再闭合开关S到b处,调节滑动变阻器滑片P,使电流强度保持不变,指针示数比之前更偏右。请回答:
(1)实验1的目的是研究电磁铁磁性强弱与   的关系,实验过程中指针向  (填“左”或“右”)偏转。
(2)实验2的目的是研究电磁铁磁性强弱与   的关系;根据实验数据可以得出的结论是   。
【答案】(1)电流大小;右
(2)线圈匝数多少;当电流大小不变时,电磁铁线圈匝数越多,磁性越强
【解析】(1)①根据题目描述分析哪个因素发生改变,从而确定研究目的;
②根据电磁铁的磁场变化确定小磁体受到磁力的变化,进而确定指针的偏转角度变化。
(2)①根据题目描述分析哪个因素发生改变,从而确定研究目的。
②根据指针的示数变化确定电磁铁的磁场强弱变化,进而确定磁场强弱与线圈匝数的关系时。
【解答】(1)①根据“再将滑片P逐渐向下移动”可知,通过电磁铁的电流大小发生改变,那么实验1的目的是探究电磁铁磁场强弱与电流大小的关系。
②将滑片P逐渐向下移动时,变阻器的阻值减小,通过电磁铁的电流变大,那么磁场变强,于是小磁体受到的吸引力增大,于是指针向右偏转。
(2)①根据“再闭合开关S到b处”可知,电磁铁的线圈匝数增多,那么实验2的探究目的是研究电磁铁的磁场强弱与线圈匝数的关系;
②指针示数比之前更偏右,说明电磁铁的磁场强度更大,那么得到结论:当电流大小不变时,电磁铁线圈匝数越多,磁性越强。
变式3:(2023八下·义乌期中)为探究电磁铁的磁性强弱跟哪些因素有关,小科做了如下的实验。
步骤1:在水平桌面上放置一小车,小车上固定一块条形磁铁(如图)。
步骤2:当闭合开关时,小车会沿水平方向向右运动,记录小车在水平桌面上运动的距离S1。
步骤3:断开开关,把小车重新放在起始位置,依次向右移动变阻器滑片,闭合开关,记录小车在水平桌面上运动的距离。实验数据如下:
(1)请你在图中用一根导线(用笔画线代替)完成实验电路的连接。
(2)通过本实验可得出的结论是:   。
实验次数 1 2 3 4 5 6
电流的大小(安) 1.2 1.4 1.6 1.8 2.0 2.2
小车运动的距离(厘米) 15 19 24 30 ? ?
(3)电磁铁的磁性不仅跟电流的大小有关,而且还与线圈的匝数有关,若要研究电磁铁磁性与线圈匝数的关系,已知线圈的电阻不能忽略,那么将滑动变阻器的连接线从a处移动到b处后,闭合开关后下一步的操作是   ,然后再记录小车运动的距离。
【答案】(1)
(2)线圈匝数一定时,电流越大,电磁铁的磁性越强
(3)移动滑动变阻器保持线圈中的电流不变
【解析】(1)根据滑动变阻器的使用方法解答;
(2)根据小车运动的距离大小确定电磁铁的磁性强弱,根据表格确定哪个变量相同,那个变量不同,据此描述实验结论。
(3)探究线圈匝数对电磁铁磁场强弱的影响时,必须控制通过线圈的电流相等,而改变线圈匝数,据此分析解答。
【解答】(1)滑动变阻器应该与开关串联,且接线“一上一下”,如下图所示:
(2)根据表格可知,线圈的匝数相同,电流越大,则小车运动的距离越大,那么得到结论:线圈匝数一定时,电流越大,电磁铁的磁性越强。
(3)若要研究电磁铁磁性与线圈匝数的关系,已知线圈的电阻不能忽略,那么将滑动变阻器的连接线从a处移动到b处后,闭合开关后下一步的操作是:移动滑动变阻器保持线圈中的电流不变,然后再记录小车运动的距离。
1.如图所示,当通电后敲击塑料板,观察到铁粉的分布情况是的(图中“”为导线穿过塑料板的位置) (  )
A. B. C. D.
【答案】D
【解析】根据磁场的分布情况分析判断。
【解答】右手握住直导线,大拇指指向电流方向,弯曲的四指指尖所指的方向就是磁场的环绕方向。据此可知,通电直导线周围的磁场分别为一圈圈的同心圆,圆心就是直导线。故D正确,而A、B、C错误。
2.(2023八下·浙江期中)如图所示,甲乙为条形磁体,中间是螺线管,虚线表示磁极间的磁场分布情况的磁感线,则可以判断图中A、B、C、D四个磁极依次是(  )
A.N S N N B.S N S S
C.S S N S D.N N S N
【答案】D
【解析】首先根据安培定则判断电磁铁的磁极方向,再根据磁感线的形状确定旁边磁极的种类。
【解答】根据图片可知,线圈上电流方向向上。右手握住螺线管,弯曲的四指指尖向上,此时大拇指指向左端,则电磁铁的左端为N极,右端为S极。甲和电磁铁的N极之间磁感线呈顶牛之势,则为同极,那么甲为N极。乙和电磁铁的S极之间磁感线相连,为异极,那么乙为N极。
3.(2023八下·上虞期末)如图是一些研究电现象和磁现象的实验。下列关于这些实验的叙述正确的是(  )
A.图1中小磁针被铁棒吸引,说明铁棒本身具有磁性
B.图2中小磁针发生偏转,说明电流周围存在磁场
C.图3中条形磁铁静止时A端总是指向地理北方,说明A端是条形磁铁的南极
D.图4中铁钉B吸引的大头针比A多,说明电磁铁的磁性强弱与电流大小有关
【答案】B
【解析】(1)根据物体有无磁性的判断方法分析;
(2)根据奥斯特实验的实验现象判断;
(3)当磁体自由转动并静止下来时,指南的一端为南极,指北的一端为北极;
(4)根据图片分析影响电磁铁磁场强弱的因素。
【解答】A.图1中小磁针被铁棒吸引,那么可能情况为:①铁棒有磁性,且和小磁针靠近的是异极;②铁棒没有磁性,而小磁针有磁性,因为所有的磁体都有吸引铁磁性物质的性质,故A错误;
B.图2中小磁针发生偏转,说明电流周围存在磁场,故B正确;
C.图3中条形磁铁静止时A端总是指向地理北方,说明A端是条形磁铁的北极,故C错误;
D.图4中电磁铁串联,那么通过它们的电流相同,而铁钉B吸引的大头针比A多,说明电磁铁的磁性强弱与线圈匝数有关,故D错误。
4.(2023八下·吴兴期中)如图所示,电磁铁P和Q通电后(  )
A.P的右端是N极,Q的左端是S极,它们相互吸引
B.P的右端是S极,Q的左端是N极,它们相互吸引
C.P的右端是N极,Q的左端是N极,它们相互排斥
D.P的右端是S极,Q的左端是S极,它们相互排斥
【答案】C
【解析】根据安培定则分别确定两个电磁铁的磁极方向,然后根据磁极之间的相互作用规律分析二者之间的作用力即可。
【解答】左:线圈上电流方向向下。右手握住螺线管,弯曲的四指指尖向下,此时大拇指指向右端,则右端为电磁铁的N极;
右:线圈上电流方向向上。右手握住螺线管,弯曲的四指指尖向上,此时大拇指指向左端,则左端为电磁铁的N极;根据同名磁极相互排斥可知,此时它们之间相互排斥。
5.(2023八下·吴兴期末)玩具小船上固定有螺线管(有铁芯)、电源和开关组成的电路,如图所示,把小船按图示的方向放在水面上,闭合开关,船头最后静止时的指向是
A.向东 B.向南 C.向西 D.向北
【答案】D
【解析】根据安培定则判断螺线管的磁极方向即可。
【解答】根据图片可知,线圈上电流方向向下。右手握住螺线管,弯曲的四指指尖向下,此时大拇指指向右端,则右端船头为螺线管的N极,左端船尾为S极,那么船头最后静止时指向是向北的。
6.(2023八下·拱墅期末)如图甲所示为磁悬浮地球仪,球体内有一条形磁体,上端为S极,其下方环形底座内有一电磁铁,通过磁极间的相互作用使地球仪悬浮在空中,如图乙所示为其内部结构示意图,下列判断错误的是(  )
A.电磁铁下端为S极
B.电源上端为正极
C.当滑动变阻器滑片P向右滑动时,电磁铁的磁性增强
D.若在球体正上方A处吸一小铁块,可适当向右滑动滑片P使球体离底座的距离保持不变
【答案】B
【解析】(1)(2)首先根据平衡力的知识判断球体受到电磁力的方向,然后根据磁极之间相互作用判断电磁铁的磁极方向。接下来根据安培定则判断线圈上电流方向,进而确定电源的正负极;
(3)电磁铁的磁性强弱与电流大小有关;
(4)磁体之间的作用力随距离的增大而减小,随距离的减小而增大。首先根据平衡力的知识判断电磁力的变化,再根据距离不变确定通过电磁铁电流大小的变化即可。
【解答】AB.条形磁体上端为S极,则下端为N极,根据同名磁极相互排斥可知,电磁铁的上端为N极,下端为S极。伸出右手,使大拇指指向电磁铁的N极(电磁铁的上端),则四指弯曲所指的方向为电流的方向,电流从螺线管的上端流入,下端流出,所以电源的上端为正极,故A错误符合题意,B正确不合题意;
C.当滑动变阻器滑片P向右滑动时,变阻器连入电路的电阻变小,由欧姆定律可知通过电路的电流变大,电磁铁的磁性增强,故C正确不合题意;
D.若在球体正上方A处吸一小铁块,则球体的重力增大。而球体受到的重力和排斥力是平衡力,则球体排斥力也要增大。使球体离底座的距离保持不变,需要增强磁场强度,需要增大电路中的电流,可适当向右滑动滑片P,故D正确不合题意。
7.(2023八下·椒江期末)如图装置中,当闭合开关,滑动变阻器的滑片P向右移动时,弹簧测力计的示数变大。下列分析正确的是(  )
A.电磁铁的上端为N极
B.电源左端为正极
C.断开开关,弹簧测力计的示数为零.
D.滑片P不动,若抽去铁芯,测力计示数将变大
【答案】B
【解析】(1)首先根据变阻器的滑片移动确定电流的大小变化,进而确定电磁铁磁场的强弱变化。然后根据弹簧测力计示数增大确定二者之间存在排斥力还是吸引力,最后根据磁极之间的相互作用规律确定电磁铁的磁极方式。
(2)利用安培定则判断出电磁铁中电流的方向,从而可以确定电源的正负极。
(3)注意分析条形磁铁不受吸引力时还受到重力作用;
(4)首先判断抽去铁芯后电磁铁磁性强弱的变化,再根据磁体间的相互作用规律确定弹簧测力计示数的变化。
【解答】A.滑动变阻器的滑片P向右移动时,变阻器接入电路的电阻变小,则电路中的电流变大,电磁铁的磁性变强。弹簧测力计的示数变大,说明电磁铁对条形磁体产生吸引力。条形磁体的下端为N极,根据异名磁极相互吸引可知,电磁铁的上端为S极,故A错误;
B.电磁铁的上端为S极,其下端为N极。右手握住螺线管,大拇指指向下端,此时弯曲的四指指尖向左,即线圈上电流方向向左,那么电流从电磁铁的上端流入、下端流出,所以电源左端为正极,右端为负极,故B正确。
C.断开开关,电路中没有电流,则电磁铁无磁性,即电磁铁对条形磁体既不吸引也不排斥,但条形磁体受重力,所以弹簧测力计有示数,故C错误。
D.滑片P不动,抽去铁芯后,电磁铁的磁性变弱,对条形磁体的吸引力变小,所以弹簧测力计的示数将变小,故D错误。
8.把一根柔软的螺旋弹簧竖直悬挂起来,使它的下端刚好与杯里的水银面相接触,并组成如图所示的电路图,当开关接通后,将看到的现象是 (  )
A.弹簧向上收缩 B.弹簧上下跳动 C.弹簧被拉长 D.弹簧仍静止不动
【答案】B
【解析】根据安培定值判断线圈上的磁极方向,根据磁极之间的相互作用规律确定线圈之间力的作用即可。
【解答】根据图片可知,线圈上电流方向向左。右手握住螺线管,弯曲的四指指尖向左,此时大拇指指向下端,则每个线圈的下端为N极,上端为S极。根据“异名磁极相互吸引”可知,相邻线圈相互吸引而缩短。此时弹簧与水银面分开,整个电路没有电流,则磁场消失,弹簧恢复原来长度,再次接触水银面。如此往复,预算弹簧上下跳动。
9.图1中的两个线圈,套在一根光滑的玻璃管上,导线柔软,可自由滑动。开关S闭合后,则 (  )
A.两线圈左右分开 B.两线圈向中间靠拢
C.两线圈静止不动 D.两线圈先左右分开,然后向中间靠拢
【答案】A
【解析】首先根据安培定则判断两个螺线管的磁极方向,然后根据磁极之间的相互作用规律判断线圈的受力情况即可。
【解答】左边:线圈上电流方向向下,右手握住螺线管,弯曲的四指指尖下,此时大拇指指向右端,则右端为N极;
右边:线圈上电流方向向上,右手握住螺线管,弯曲的四指指尖上,此时大拇指指向左端,则左端为N极。根据“同名磁极相互排斥”可知,两个线圈左右分开。
10.(2023八下·婺城期末)如图所示,用细线悬挂的磁体AB,磁极未知,当闭合电路开关S后,磁体的B端与通电螺线管左端相互吸引,则A端是磁体的   极,断开S,磁体静止时,B端会指向地理的   (填“北方”或“南方”)。
【答案】N;南方
【解析】(1)根据安培定则判断螺线管磁极方向,再根据磁极之间的相互作用规律确定A端的磁极。
(2)当磁体自由转动静止下来时,指南的一端为南极,指北的一端为北极。
【解答】(1)根据图片可知,线圈上电流向上。右手握住螺线管,弯曲的四指指尖向上,此时大拇指指向左端,则电磁铁的左端为N极。根据“异名磁极相互吸引”可知,条形磁体的B端为S极,A端为N极。
(2)B端为S极,则断开S,电磁铁失去磁场,那么磁体静止时B端指向地理的南方。
11.(2023八下·新昌期末)小科设计了如图所示的实验来研究电磁现象,当他闭合开关S后,发现小磁针发生了偏转。
(1)小磁针发生偏转这一现象说明电流的周围存在着   ,这一现象最早是由   (选填“法拉第”、“奥斯特”或“安培”)发现的。
(2)实验前,小磁针静止时指向   (选填“东西"或“南北")方向。
【答案】(1)磁场;奥斯特(2)南北
【解析】(1)根据奥斯特实验的科学史实分析解答;
(2)所有的磁体在不受外力作用时都有指南北的性质,指南的一端为S极,指北的一端为N极,据此分析解答。
【解答】(1)小磁针发生偏转这一现象说明它受到了外在磁场的作用力,极电流的周围存在着磁场,这一现象最早是由奥斯特发现的。
(2)实验前,由于地磁场的作用,小磁针静止时指向南北方向。
12.(2023八下·柯桥期末)如图所示,盛水的烧杯放在电磁铁上方,当电磁铁的开关断开时,空心小铁球自由地浮在水面上:开关闭合时,小磁针发生偏转,此时电磁铁上端为   极,要使小铁球下沉些,滑动变阻器的滑片应向   (填”上”或”下”)移动:断开开关时,小磁针又回到最初的状态是因为   的作用。
【答案】N;下;地磁场
【解析】用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极。电磁铁磁性的强弱与电流大小,线圈匝数有关,线圈匝数不变时,电流越大,磁性越强。小磁针在地球表面受到地磁场的作用,所以一直南北指向。
【解答】闭合开关时,电流从电磁铁的下端流入上端流出,根据右手螺旋定则可知电磁铁上端为N极,下端为S极。空心小铁球下沉一些,受到的浮力就会增大,需要增大电磁铁对小铁球的吸引力,应增大电磁铁的磁性,需要将滑动变阻器的滑片向下移动,以减小变阻器连入电路的电阻,从而增大通过电磁铁的电流;断开开关时,电磁铁的磁性消失,小磁针又回到南北指向,是因为受到地磁场的作用。
13.(2023八下·龙湾期中)医生给心脏疾病的患者做手术时,往往要用一种称为 “人工心脏泵"(血泵)的体外装置来代替心脏,以推动血液循环。如图是该装置的示意图,线圈AB固定在用软铁制成的活塞柄上(相当于一个电磁铁),通电时线圈与活塞柄组成的系统与固定在左侧的磁体相互作用,从而带动活塞运动。活塞筒通过阀门与血管相通,阀门S1只能向活塞筒外开启,S2只能向活塞筒内开启。
(1)线圈中的电流从B流向A时,螺线管的左边是   (选填“N”或“S")极。
(2)若线圈中的电流从A流向B时,活塞向    运动(选填“左”或“右"),血液的流向是   。(选填“从②流向①”或“从③流向②”)状态。
【答案】(1)N (2)右;从②流向①
【解析】(1)根据安培定则可知通电螺线管的极性;
(2)根据磁极间相互作用可知活塞的移动方向。【解答】(1)线圈中的电流从B流向A时,线圈上电流方向向上。右手握住螺线管,弯曲的四指指尖向上,此时大拇指指向左端,则螺线管左端为N极;
(2)条形磁铁的右端为N极,电磁铁的左端为N极。根据“同名磁极相互排斥”可知,活塞柄抽向右运动,使得阀门S2关闭,S1打开,则血液由②流向①。
14.两根平行导线通电后,会出现如图甲所示的现象(图中实线、虚线分别表示通电前、后的情况)。由此可以推断:在图乙所示的电路中,当开关S闭合时,螺线管的长度会   (填“变长”或“变短”,不考虑摩擦力)。你判断的依据:   。
【答案】变短;螺线管上由于相邻导线中的电流方向都相同,相互吸引,故变短
【解析】根据乙图确定线圈上电流方向,弄清相邻导线之间的电流关系,然后与甲图进行比较,从而确定两根导线之间的力的作用。
【解答】根据乙图可知,线圈上的电流方向都是向上的,即相邻导线之间电流方向相同。根据甲图可知,当相邻导线的电流方向相同时,二者之间相互吸引,因此螺旋管的长度会变短,那么依据是:螺线管上由于相邻导线中的电流方向都相同,相互吸引,故变短。
15.(2023八下·滨江期末)在“探究电磁铁磁性强弱与电流大小关系”的实验中,小明用绝缘细线将电磁铁M悬挂在铁架台上,并保持它与软铁块P的距离不变。以下是他的部分实验步骤:
①断开开关S,按图组装实验电路,将滑动变阻器的滑片置于最右端。用已调零的电子测力计测出软铁块P对测力计的压力F0并记录在表格中;
②闭合开关S,调节滑动变阻器的滑片到适当位置,读出电流表的示数I和电子测力计的示数F,并将I、F的数据记录在表格中;
③仿照步骤②再进行两次实验。
实验次数 1 2 3
F0/N 0.9 0.9 0.9
I/A 0.34 0.40 0.44
F/N 0.84 0.82 0.81
(1)实验中小明是通过   来判定电磁铁磁性强弱的。
(2)闭合开关S后,电磁铁下端的磁极为   (选填“N”或“S”)极。
(3)由表中数据可以得出的实验结论是:   。
(4)本实验中,滑动变阻器除了保护电路的作用外,还起到   的作用。
【答案】(1)电子测力计示数
(2)N
(3)线圈匝数一定时,通过电磁铁的电流越大,电磁铁磁性越强
(4)改变电流大小
【解析】(1)电磁铁的磁场越强,对下面软铁的吸引力越大,则软铁对电子测力计的压力越小,此时测力计的示数越小;
(2)根据安培定则判断电磁铁的磁极方向;
(3)根据电子测力计的示数判断磁场强弱,根据表格确定磁场强弱与电流大小的关系;
(4)滑动变阻器通过改变接入电路里电阻线的长度来改变阻值,从而改变电压和电流。
【解答】(1)实验中小明是通过电子测力计示数来判定电磁铁磁性强弱的。
(2)根据图片可知,线圈上电流方向向右。右手握住螺线管,完全的四指指尖向右,此时大拇指指向上面,则上端为电磁铁的N极,下端为电磁铁的S极。
(3)根据表格数据可知,当电流越大时,电子测力计的示数越小,那么得到结论:线圈匝数一定时,通过电磁铁的电流越大,电磁铁磁性越强。
(4)本实验中,滑动变阻器除了保护电路的作用外,还起到改变电流大小的作用。
16.某小组在探究“电磁铁磁性强弱与哪些因素有关”的实验中,设计了如图所示电路,并进行了实验,当电磁铁通电时会对磁体产生力的作用,使指针绕O点转动,记录指针A所指的刻度值大小,实验结果如下表。
线圈接线点 接线柱1 接线柱2 接线柱3
实验次数 1 2 3 4 5 6 7 8 9
电流/A 0.8 1.2 1.6 0.8 1.2 1.6 0.8 1.2 1.6
指针所指的刻度值大小 0.8 1.2 1.6 0.6 0.9 1.2 0.4 0.6 0.8
(1)进行1、4、7实验基于的假设是   。
(2)实验中,他们将开关S从接线柱“1”换到“2”上时,调节变阻器的滑片P,再次观察电流表示数及指针A所指的刻度值大小,此时调节滑动变阻器是为了   。
(3)写出能使指针反向偏转的具体措施   (写出一条即可)。
【答案】(1)电磁铁磁性强弱可能与线圈匝数多少有关
(2)控制电流大小相等
(3)对调磁体的磁极(或对调电源的正、负极,或改变线圈的缠绕方向)
【解析】(1)根据表格数据分析哪个因素发生改变,根据指针的偏转幅度判断磁场强弱变化,据此作出猜想即可;
(2)根据控制变量法的要求解答;
(3)指针反向偏转,即它受到磁力的方向相反,那么电磁铁产生的磁场方向发生改变,根据影响电磁铁磁场方向的因素分析解答。
【解答】(1)分析实验数据1、4、7可知,通过电磁铁的电流大小相同而线圈匝数不同,那么基于的猜想为:电磁铁磁性强弱可能与线圈匝数多少有关。
(2)实验中,他们将开关S从接线柱“1”换到“2”上时,线圈匝数发生改变,即探究电磁铁的磁场强弱与线圈匝数的关系,此时需要控制电流相同,因此调节滑动变阻器是为了控制电流大小相等。
(3)能使指针反向偏转的具体措施:对调磁体的磁极(或对调电源正、负极,或改变线圈的缠绕方向)。
17.(2023八下·武义期末)
(1)如图甲所示是电磁学中一个很重要的实验,从实验现象可知   ,这是1820年丹麦物理学家奥斯特发现的;
(2)把直导线弯曲成螺线形,当螺线形线圈插入   后磁性增强,此装置称为电磁铁。为探究电磁铁的磁性与哪些因素有关,小丽同学做出以下猜想:
猜想I:通过电磁铁的电流越大,它的磁性越强。
猜想II:外形相同的电磁铁,线圈的匝数越多,它的磁性越强。
为了检验上述猜想是否正确,小丽所在实验小组通过交流合作设计了以下实验方案:用漆包线(表面涂有绝缘漆的导线)在大铁钉上绕50或100圈,绕制前在大铁钉表面裹一张纸片,纸片的作用是   。制成简单的电磁铁如图乙所示的三种情况。根据小丽的猜想和实验,完成下面填空:(通过观察电磁铁吸引大头针数目多少的不同,来判断磁性强弱的不同)
①通过比较图   两种情况,可以验证猜想I是正确的;
②通过比较C图a、b两电磁铁能否研究猜想II,说明原因   。
【答案】(1)通电导体周围存在磁场
(2)铁芯;避免绝缘漆破损铁钉导电;AB;没有控制电流一样
【解析】奥斯特实验证明了:通电导体周围存在磁场,磁场的强弱和电流大小有关,磁场方向和电流方向有关。通电螺线管周围也存在磁场,电磁线圈的匝数越多,通过线圈的电流越大,线圈的磁性越强;插入铁芯,线圈的磁性大大增强。图中A与B对照,变量是电流大小,B的电流大于A,B吸引的大头针多于A,C中两个电磁铁是并联在电路中,电压相同,电流不同,a的匝数多于b,a吸引的大头针比b多。
【解答】(1)通电后小磁针发生偏转,说明通电导体周围存在磁场;
(2)电磁铁指带铁芯的通电螺线管,所以螺线形线圈插入铁芯后就称为电磁铁。 绕制前在大铁钉表面裹一张纸片,纸片是绝缘体,防止短路现象的发生;所以纸片作用是: 避免绝缘漆破损铁钉导电 。①要验证猜想l是正确的,根据控制变量法可知必须控制线圈的匝数相同,改变电流的大小,观察电磁铁吸引大头针数目的多少,符合此要求的只有A B两图;
②C图中甲、乙两磁铁并联,通过的电流不同,故不能研究猜想Ⅱ。
18.(2023八下·新昌期末)如图是小明研究“影响电磁铁磁性强弱因素"的装置图。在弹簧上方固定物体A,当导线c与a点相连,闭合开关后,电流表指针发生偏转。
(1)弹簧上方的物体A应由   制成(选填“铜”、“铁”或“铝”)。
(2)当开关闭合后,电磁铁上端应为磁极的   极。
(3)当滑动变阻器R的滑片向左滑动时,电流表指针偏转的角度将会   。
(4)保持滑动变阻器R的滑片位置不变,当导线c由a点改为与b点相连,闭合开关后,可发现电流表指针偏转的角度将会   (选填“变大”或“变小”)。
(5)经过对电磁铁的研究,可得出结论:当线圈匝数一定时,通过电磁铁的电流越大,电磁铁磁性   ;当通过电磁铁的电流一定时,电磁铁线圈的匝数越多,磁性越强。
【答案】(1)铁 (2)S (3)变大 (4)变小 (5)越强
【解析】(1)只有铁磁性材料制成的物体才能被电磁铁吸引;
(2)根据安培定则判断电磁铁的磁极方向;
(3)根据滑片移动方向确定控制电路电流变化,确定电磁铁的磁场强弱变化,弄清工作电路部分变阻器的阻值变化,最终确定电流表的示数变化即可。
(4)根据线圈匝数对电磁铁磁场强弱的影响,判断工作电路部分变阻器的阻值变化即可;
(5)根据影响电磁铁磁场强弱的因素的知识解答。
【解答】(1)根据图片可知,电磁铁的磁场强弱改变时,A由于吸引力的变化而调节变阻器R的阻值,因此A应该为铁磁性材料,故选铁。
(2)根据图片可知,电磁铁线圈上电流方向向左。右手握住螺线管,完全的四指指尖向左,此时大拇指指向下端,则下端为电磁铁的N极,上端为电磁铁的S极。
(3)当滑动变阻器R的滑片向左滑动时,它的阻值减小,通过电磁铁的电流增大,它的磁场变强,对A的吸引力变大。A带着滑片向上移动,此时变阻器R的阻值减小,而通过电路的电流增大,即电流表指针偏转角度变大。
(4)保持滑动变阻器R的滑片位置不变,当导线c由a点改为与b点相连,线圈匝数减少,则电磁铁的磁场减弱,A点受到的吸引力减小而向下移动,因此变阻器R的阻值增大,那么通过电路的电流减小,即电流表的指针偏转角度变小。
(5)经过对电磁铁的研究,可得出结论:当线圈匝数一定时,通过电磁铁的电流越大,电磁铁磁性越强;当通过电磁铁的电流一定时,电磁铁线圈的匝数越多,磁性越强。
19.(2023八下·金华期中)学习了电磁知识后,小柯了解到相互靠近的通电导线之间会产生相互作用力。那么这个力的大小和方向与哪些因素有关呢?他将两根导线(可伸长)平行放置后固定(如图 1 甲所示),然后依次通上如图乙、丙、丁所示的电流,通过反复实验证实了他的猜想。请回答:
(1)分析图 1   (选填序号),可知通电导线之间作用力大小与电流大小有关。
(2)得到通电导线之间的相互作用力的方向与电流方向有关的结论,你的依据是  。
(3)如图 2 所示,将一柔软的导线弯成星形,并将其置于光滑水平桌面上,然后将开关 S 闭合,则该星形回路将 。(填字母编号)
A.不会变形 B.会变形,所围面积减小
C.会变形,所围面积增大 D.会变形,所围总面积不变
【答案】(1)丙、丁
(2)对比乙和丙,在电流大小相同的情况下,电流方向不同,两根导线分别出现靠近和排斥,即作用力的方向不同
(3)C
【解析】控制变量法主要是指研究某一因素对实验的影响时,应控制其余无关变量的相同且适宜。
【解答】(1)研究作用力大小与电流大小的因素时,需控制除电流大小外的其余条件相同且适宜,故为丙和丁;
(2) 对比乙和丙可知,在电流大小相同的情况下,电流方向不同,两根导线分别出现靠近和排斥,即作用力的方向不同;
(3) 由图2可知相邻导线为相反方向电流,故其相互排斥使面积变大。
故答案为:(1) 丙、丁 ;(2) 对比乙和丙,在电流大小相同的情况下,电流方向不同,两根导线分别出现靠近和排斥,即作用力的方向不同 ;(3)C
20.(2023八下·杭州期末)如图为某青少年科技创新小组制作的电流磁效应演示器。有机玻璃管中装有适量的水并固定在小桌上,水中悬浮着一个带有铁钉的浮球。管外绕有匝数可变的线圈(1和2之间为150匝,1和3之间为400匝)。按图示连接好电路后,小组成员开始探究通电螺线管周围磁场强弱的影响因素,步骤如下:
①线圈连接1和2,闭合开关,调节滑动变阻器滑片至电流表示数为0.5A,浮球没有运动;
②继续调节滑片至电流表示数为1.5A,观察到浮球向下运动到线圈附近;
③断开开关,线圈改接1和3后,闭合开关______观察到浮球向下运动到线圈附近。
请回答以下问题:
(1)步骤①②可得出的结论是   。
(2)小组成员通过对比步骤①和③,得出通电螺线管周围磁场强弱与线圈匝数有关,请据此补充步骤③的操作   。
(3)接着某小组成员将电源”+、-”极对调,想要探究通电螺线管周围磁场的方向与电流方向的关系,其他成员还需要将浮球中的铁钉换成   ,才能完成实验。
【答案】(1)线圈匝数一定时,通过通电螺线管的电流越大,通电螺线管的磁性越强
(2)调节滑动变阻器的滑片至电流表示数为0.5A
(3)小磁针
【解析】
通电螺线管磁性强弱的影响因素:电流和线圈匝数。当线圈匝数一定时,电流越大,磁性越强;当电流一定时,线圈匝数越多,磁性越强。
磁体间相互作用规律:同名磁极相互排斥,异名磁极相互吸引。
【解答】
(1)步骤①②是在线圈匝数不变的条件下,将电流增大,从而得到通电螺线管的磁性强弱与电流大小的关系。
(2)要探究通电螺线管的磁性强弱与线圈匝数的关系,需控制电流大小相同,故将电流调为0.5A。
(3)利用磁体间相互作用规律进行分析。
21.(2022八下·婺城期末)网络上有一“牛人”制作的“电池磁力小火车”的视频。视频中,“牛人”把由铁铷合金制作的超强磁铁分别吸附在电池的正负极两端制成“小火车”,并将其整个放入自制的铜质螺线管中,发现电池与磁铁竟然沿着螺线管向右运动起来,直到从螺线管的另一端穿出(如图1)。小科对“小火车”为什么会运动非常感兴趣,便动手进行了实验。
(1)图1中,两侧磁铁之间的线圈中会有电流通过,他由此推测:只有当线圈中有电流通过时,火车才会受力运动。为验证这一假设,他需要进一步的操作是   ;
(2)预测图2中的小火车将向   (填“左”或“右”)运动;
(3)要让小火车更快速地通过螺线管,可以采取的措施有 (填字母编号);
A.增强磁铁的磁性
B.减少与磁铁接触的那一段螺线管匝数
C.减小电池的电压
D.增大螺线管中电流从而增强其磁场
(4)要使小火车由静止开始顺利通过螺线管,下列摆放方式可行的是 (填字母编号)。
A. B.
C. D.
【答案】(1)将电池的一端与磁铁断开,这时再观察火车是否运动
(2)左 (3)A;D (4)A
【解析】(1)为验证只有当线圈中有电流通过时,火车才会受力运动,可以将电池一端与磁铁断开;
(2)通电导体在磁场中的受力方向与磁场方向和电流方向有关,据此将两图进行比较即可。
(3)要使“小车”运动速度增大,应增大螺线管的磁性。根据影响螺线管磁场强弱的因素判断;
(4)根据电流的流向与磁铁产生的磁场方向对比分析。【解答】(1)两侧磁铁之间的线圈中会有电流通过,他由此推测:只有当线圈中有电流通过时,火车才会受力运动。为验证这一假设,他需要进一步的操作是:将电池的一端与磁铁断开,这时再观察火车是否运动。
(2)将图2和图1比较可知,其它条件都相同,就只有电源的正负极方向发生变化,即线圈上的电流方向相反,那么线圈产生的磁场方向相反,因此小车的受力方向相反。因为图1中火车向右运动,所以图2中小车应该向左运动。
(3)A.增强磁铁的磁性可以增大螺线管的磁性,故A正确;
B.减少与磁铁接触的那一段螺线管匝数,在电流不变的情况下,螺线管的磁性会减弱,故B错误;
C.减小电池的电压能减小电路中的电流,减弱螺线管的磁性,故C错误;
D.增大螺线管中电流可以增强螺线管的磁性,故D正确;故选AD;
(4)A.A图中,螺线管内部的磁场向右,与电池负极相吸的磁铁受到向左的力,与电池正极相吸的磁铁受到向左的力,小车向左,故A正确;
B.B图中,螺线管内部的磁场向左,与电池负极相吸的磁铁受到向左的力,与电池正极相吸的磁铁受到向右的力,小车不动,故B错误;
C.C图中,螺线管内部的磁场向右,与电池负极相吸的磁铁受到向左的力,与电池正极相吸的磁铁受到向右的力,小车不动,故C错误;
D.D图中,电池正极一端没有进入磁场,小车不动,故D错误。
思维导图
典例分析
举一反三
典例分析
举一反三
典例分析
举一反三
课后巩固
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第2节 电生磁
考点一、直线电流的磁场
(一)奥斯特实验
任何导线中有电流通过时,其周围空间都产生磁场,这种现象叫做电流的磁效应。奥斯特实验揭示了电现象与磁现象不是孤立的,而是密切联系的,奥斯特实验是第一个揭示电和磁联系的实验。
(1)在小磁针的上方放置一根与小磁针平行的直导线,当给直导线通电时,可观察到小磁针发生了偏转(如图所示)。
结论:小磁针受到了力的作用,通电导线的周围存在磁场。
(2)电路断电后,小磁针不发生偏转(如图乙所示)。
(3)改变电流的方向,观察到小磁针的偏转方向发生改变,即偏转方向与第一次偏转方向相反(如图丙所示)。
结论:通电导线周围的磁场方向与电流的方向有关。
(二)直线电流的磁场分布特点
在有机玻璃板上穿一个孔,一根直导线垂直穿过小孔,在玻璃板上均匀地撒上一些细铁屑。 给直导线通电后,轻敲玻璃板,观察到细铁屑在直导线周围形成一个个同心圆(如图所示)。
结论:直线电流周围的磁感线分布规律是以直导线上各点为圆心的同心圆,这些同心圆在与直导线垂直的平面上,越靠近通电直导线,磁场越强,反之越弱。
①由于地磁场的存在,小磁针静止时南北指向,为使实验结果更明显,通电导线应沿南北方向放置。
②将磁场的分布规律
转换为铁屑的分布情况,这是转换法的应用。
典例1:(2023八下·兰溪期中)如图所示,在科学实验课上,方老师带领大家一起做奥斯特实验。方老师告诉同学们,为了让实验效果更加明显,建议大家将通电直导线沿   方向放置(选填“东西”或“南北”),此时直导线在小磁针处产生的磁场方向和放在该点小磁针的   极指向一致(选填“N”或“S”)。
变式1:如图所示,在竖直放置的矩形通电线框中悬挂一个能自由转动的小磁针。当通以图中所示方向的电流时,小磁针N极将 (  )
A.转动90°,垂直指向纸里 B.转动90°,垂直指向纸外
C.转动180°,指向左边 D.静止不动,指向不变
变式2:如图所示是奥斯特实验的示意图,其中ab、cd为金属棒,支架其余部分为绝缘材料。a、b接上导线并通电,观察小磁针的偏转情况。
(1)此实验成功的条件之一是金属棒呈   (填“东西”或“南北”)方向放置。
(2)将导线分别从a、b移到c、d,电流大小、方向保持不变,小磁针的偏转方向   (填“改变”或“不变”)。
变式3:(2023八下·黄岩期末)早在19世纪,安培对于地磁场的形成提出如下假设:地球的磁场是由围绕地轴的环形电流I引起的(如图甲)。小黄学习了电和磁的知识后,知道了通电直导线周围的磁场分布符合安培定则,那么环形电流内部的磁场是否也符合如图乙所示的安培定则呢?他展开了以下探究。
[建立猜想]环形电流内部的磁场可能也符合安培定则。
[实验过程]连接如图丙所示的电路(外部电路未画出)。
[实验现象]位于圆环中心的小磁针N极垂直纸面向里转动。
(1)小黄同学的探究实验中放置小磁针的作用是   。
(2)根据实验现象,小黄的结论   。
(3)根据安培提出的假设,则赤道这一通电圆环的电流方向为   。
考点二、通电螺线管的磁场
(一)通电螺线管的有关实验
(1)实验一
①用导线绕成螺线管后通电,观察到能吸引大头针。说明通电螺线管周围存在磁场。
②在螺线管中插入一根铁棒或一枚铁钉,观察到通电螺线管能吸引更多大头针,说明插入铁芯后通电螺线管的磁性增强。产生此现象的原因是铁芯在磁场中被磁化后相当于一个磁体,通电螺线管产生的磁场与被磁化的铁芯的磁场叠加,产生了更强的磁场,吸引了更多的大头针。
(2)实验二
①在穿过螺线管的有机玻璃板上均匀地撒上铁屑,通电后轻敲玻璃板,观察铁屑的分布规律。
结论:通电螺线管周围的磁场与条形磁体的磁场很相似。
②改变电流方向,用小磁针探测螺线管的磁极,观察发现螺线管的磁极发生变化。
结论:通电螺线管的磁极跟螺线管中的电流方向有关,改变电流方向,螺线管的磁极会发生变化。
(二)通电螺线管磁场的有关性质
(1)特点:通电螺线管外部的磁场和条形磁体的磁场相似,螺线管的两端相当于条形磁体的两极。
(2)极性的判断:通电螺线管两端的极性与螺线管中的电流方向有关,它们的关系可以用右手螺旋定则(安培定则)来判定。
(三)右手螺旋定则(安培定则)
(1)通电螺线管的磁极与电流方向之间的关系可以用右手螺旋定则(也叫安培定则)来判定:用右手握螺线管,让四指弯向螺线管中的电流方向,大拇指所指的那一端就是通电螺线管的北极。
(2)直线电流周围磁场方向与电流方向之间的关系(用右手螺旋定则判定):用右手握住导线,让大拇指指向电流的方向,四指弯曲的方向就是直线电流产生的磁场方向。
(3)右手螺旋定则的说明
①决定通电螺线管磁极极性的根本因素是通电螺线管上电流的环绕方向,而不是通电螺线管上导线的绕法和电源正负极的接法。当两个螺线管上电流的环绕方向一致时,它们两端的磁极极性相同。
②在判断通电螺线管磁极极性时,四指的环绕方向必须跟螺线管上电流的环绕方向一致。
③N极和S极一定在通电螺线管的两端。
典例1:(2023八下·杭州月考)如图所示,条形磁铁置于水平桌面上,电磁铁右端固定并保持水平,且与条形磁铁在同一平面和相同高度。当电路中开关S由断开到闭合时,条形磁铁一直保持静止,下列说法正确的是(  )
A.开关S闭合后,电磁铁左端是S极
B.开关S闭合后,条形磁铁受到摩擦力的方向向左
C.开关S闭合后,滑片P向右移动时,条形磁铁受到的摩擦力逐渐减小
D.开关S断开时,条形磁铁与电磁铁之间没有力的作用
变式1:(2023八下·杭州期末)如图所示,一根弹簧下端连着一个条形磁铁,条形磁铁的下端为N极。条形磁铁下方有一电磁铁。闭合开关后(  )
A.电磁铁左侧小磁针的N极向上偏转
B.若去掉螺线管中的铁芯,弹簧的长度会变短
C.当滑动变阻器的滑片向右滑动时,弹簧长度会变长
D.若调换电源的正负极,小磁针的指向会发生改变
变式2:(2023八下·宁波期末)如图所示闭合开关S,当滑片P向b端移动时,电磁铁的磁性   (选填“增强”或“变弱”),条形磁体对水平地面的压力   (选填“增大”、或“减小”)。
变式3:如图所示,弹簧测力计甲、乙的挂钩上分别挂着一个条形磁体和一个铁块,开关闭合后,当滑动变阻器的滑片向右移动时,弹簧测力计甲的示数   ,弹簧测力计乙的示数   (均填“变大”“变小”或“不变”)。
考点三、电磁铁
(一)电磁铁的构造:螺线管和铁芯。
(二)电磁铁的原理:电磁铁是利用电流的磁效应原理工作的。将软铁棒插入螺线管内部,当线圈通上电流时,螺线管产生磁性,线圈内部的磁场使软铁棒磁化为磁铁,使磁性增强;当电流切断时,线圈及软铁棒的磁性消失。
(三)实验探究:影响电磁铁磁性强弱的因素
铁芯能使螺线管的磁性大大增强,那么电磁铁的磁性除了与是否带铁芯有关之外,还跟哪些因素有关 下面通过实验进行探究。
(1)提出问题:影响电磁铁磁性强弱的因素有哪些
(2)建立猜想:影响电磁铁的磁性强弱的因素有电流的大小、线圈匝数的多少、螺线管的长度、导线的粗细....
(3)设计实验
实验方法:
①控制变量法:研究电磁铁磁性强弱与电流大小的关系时,控制螺线管长度、导线的粗细、线圈的匝数不变,通过移动滑动变阻器的滑片改变线圈中的电流大小,研究当电流逐渐变大时,电磁铁的磁性如何变化。
研究电磁铁的磁性强弱与线圈匝数的关系时,控制电路中的电流不变,接入不同匝数的电磁铁。
②转换法:通过电磁铁吸引大头针的数目来体现电磁铁的磁性强弱。
(4)进行实验
①用一根导线在一枚铁钉上缠绕几匝制作一个电磁铁。
②将制作的电磁铁、滑动变阻器及电流表、开关电源连人电路中,如图所示
③闭合开关,移动滑动变阻器的滑片,使电流表的示数增大,观察电磁铁吸引大头针的数目有什么变化,将观察到的实验现象记录在表格中。
④将两个线圈匝数不同的电磁铁串联在电路中,如图所示,观察两个电磁铁吸引大头针的数目有什么不同,将观察到的实验现象记录在表格中。
⑤整理好实验器材。
⑥归纳分析:图左所示实验中,通过电磁铁的电流越大,吸引大头针的数目越多,说明电磁铁的磁性越强;图右所示实验中,线圈匝数多的B电磁铁吸引大头针的数目多,说明B电磁铁比A电磁铁的磁性强。
(5)实验结论:线圈匝数一定时,通过线圈的电流越大,电磁铁的磁性越强;在电流一定时,线圈匝数越多,电磁铁的磁性越强。
典例1:(2023八下·椒江期末)在”探究电磁铁磁性强弱的影响因素”实验中,小科用细线将电磁铁M悬挂在铁架台上,将条形磁铁放在电子台秤上,如图所示。实验步骤如下:
①断开开关S,将电磁铁1、3接线柱按图示接入电路:
②按下台秤上的清零按钮使台秤示数为零。将滑片移到最大阻值处,闭合开关S,多次移动滑片位置,读出相应的电流值和台秤示数,并记录在表格中。
③断开开关S,将接线柱1改接至2,重复步骤②。
④分析数据,得出结论。
接线柱 实验次数 1 2 3
1、3 电流/A 0.34 0.40 0.44
台秤示数/N -0.81 -0.82 -0.84
2、3 电流/A 0.34 0.40 0.44
台秤示数/N -0.75 -0.76 -0.78
(1)小科通过   来推断电磁铁磁性强弱
(2)分析表中数据可得出的实验结论是   。
(3)滑动变阻器除了保护电路外,还具有   的作用。
(4)若想要使台秤的压力值显示为正,可进行的操作是    (写出一种即可)
变式1:(2023八下·仙居期末)小科用漆包线(表面涂有绝缘漆的导线)绕在铁钉上做成了有五个接线柱o、a、b、c、d的电磁铁,并将它与电源、电流表、滑动变阻器、开关、导线组成了如图所示的电路,用吸引大头针的数量来判断电磁铁磁性的强弱。
(1)为探究电磁铁磁性强弱与线圈匝数的关系,请你帮助小科完成实验方案的设计。
(2)利用该实验装置还可以探究   。
变式2:(2023八下·婺城期末)小科为验证“影响电磁铁磁性强弱的因素”,设计了如图实验,右侧底端固定有小磁铁的指针能绕转轴O转动。
实验1:将变阻器滑片P移至最上端,闭合开关S至a处,再将滑片P逐渐向下移动,观察指针示数的变化。
实验2:先将变滑片P移至最上端,闭合开关S至a处,记下指针示数和电流表示数;再闭合开关S到b处,调节滑动变阻器滑片P,使电流强度保持不变,指针示数比之前更偏右。请回答:
(1)实验1的目的是研究电磁铁磁性强弱与   的关系,实验过程中指针向  (填“左”或“右”)偏转。
(2)实验2的目的是研究电磁铁磁性强弱与   的关系;根据实验数据可以得出的结论是   。
变式3:(2023八下·义乌期中)为探究电磁铁的磁性强弱跟哪些因素有关,小科做了如下的实验。
步骤1:在水平桌面上放置一小车,小车上固定一块条形磁铁(如图)。
步骤2:当闭合开关时,小车会沿水平方向向右运动,记录小车在水平桌面上运动的距离S1。
步骤3:断开开关,把小车重新放在起始位置,依次向右移动变阻器滑片,闭合开关,记录小车在水平桌面上运动的距离。实验数据如下:
(1)请你在图中用一根导线(用笔画线代替)完成实验电路的连接。
(2)通过本实验可得出的结论是:   。
实验次数 1 2 3 4 5 6
电流的大小(安) 1.2 1.4 1.6 1.8 2.0 2.2
小车运动的距离(厘米) 15 19 24 30 ? ?
(3)电磁铁的磁性不仅跟电流的大小有关,而且还与线圈的匝数有关,若要研究电磁铁磁性与线圈匝数的关系,已知线圈的电阻不能忽略,那么将滑动变阻器的连接线从a处移动到b处后,闭合开关后下一步的操作是   ,然后再记录小车运动的距离。
1.如图所示,当通电后敲击塑料板,观察到铁粉的分布情况是的(图中“”为导线穿过塑料板的位置) (  )
A. B. C. D.
2.(2023八下·浙江期中)如图所示,甲乙为条形磁体,中间是螺线管,虚线表示磁极间的磁场分布情况的磁感线,则可以判断图中A、B、C、D四个磁极依次是(  )
A.N S N N B.S N S S
C.S S N S D.N N S N
3.(2023八下·上虞期末)如图是一些研究电现象和磁现象的实验。下列关于这些实验的叙述正确的是(  )
A.图1中小磁针被铁棒吸引,说明铁棒本身具有磁性
B.图2中小磁针发生偏转,说明电流周围存在磁场
C.图3中条形磁铁静止时A端总是指向地理北方,说明A端是条形磁铁的南极
D.图4中铁钉B吸引的大头针比A多,说明电磁铁的磁性强弱与电流大小有关
4.(2023八下·吴兴期中)如图所示,电磁铁P和Q通电后(  )
A.P的右端是N极,Q的左端是S极,它们相互吸引
B.P的右端是S极,Q的左端是N极,它们相互吸引
C.P的右端是N极,Q的左端是N极,它们相互排斥
D.P的右端是S极,Q的左端是S极,它们相互排斥
5.(2023八下·吴兴期末)玩具小船上固定有螺线管(有铁芯)、电源和开关组成的电路,如图所示,把小船按图示的方向放在水面上,闭合开关,船头最后静止时的指向是
A.向东 B.向南 C.向西 D.向北
6.(2023八下·拱墅期末)如图甲所示为磁悬浮地球仪,球体内有一条形磁体,上端为S极,其下方环形底座内有一电磁铁,通过磁极间的相互作用使地球仪悬浮在空中,如图乙所示为其内部结构示意图,下列判断错误的是(  )
A.电磁铁下端为S极
B.电源上端为正极
C.当滑动变阻器滑片P向右滑动时,电磁铁的磁性增强
D.若在球体正上方A处吸一小铁块,可适当向右滑动滑片P使球体离底座的距离保持不变
7.(2023八下·椒江期末)如图装置中,当闭合开关,滑动变阻器的滑片P向右移动时,弹簧测力计的示数变大。下列分析正确的是(  )
A.电磁铁的上端为N极 B.电源左端为正极
C.断开开关,弹簧测力计的示数为零 D.滑片P不动,若抽去铁芯,测力计示数将变大
8.把一根柔软的螺旋弹簧竖直悬挂起来,使它的下端刚好与杯里的水银面相接触,并组成如图所示的电路图,当开关接通后,将看到的现象是 (  )
A.弹簧向上收缩 B.弹簧上下跳动 C.弹簧被拉长 D.弹簧仍静止不动
9.图1中的两个线圈,套在一根光滑的玻璃管上,导线柔软,可自由滑动。开关S闭合后,则 (  )
A.两线圈左右分开 B.两线圈向中间靠拢
C.两线圈静止不动 D.两线圈先左右分开,然后向中间靠拢
10.(2023八下·婺城期末)如图所示,用细线悬挂的磁体AB,磁极未知,当闭合电路开关S后,磁体的B端与通电螺线管左端相互吸引,则A端是磁体的   极,断开S,磁体静止时,B端会指向地理的   (填“北方”或“南方”)。
11.(2023八下·新昌期末)小科设计了如图所示的实验来研究电磁现象,当他闭合开关S后,发现小磁针发生了偏转。
(1)小磁针发生偏转这一现象说明电流的周围存在着   ,这一现象最早是由   (选填“法拉第”、“奥斯特”或“安培”)发现的。
(2)实验前,小磁针静止时指向   (选填“东西"或“南北")方向。
12.(2023八下·柯桥期末)如图所示,盛水的烧杯放在电磁铁上方,当电磁铁的开关断开时,空心小铁球自由地浮在水面上:开关闭合时,小磁针发生偏转,此时电磁铁上端为   极,要使小铁球下沉些,滑动变阻器的滑片应向   (填”上”或”下”)移动:断开开关时,小磁针又回到最初的状态是因为   的作用。
13.(2023八下·龙湾期中)医生给心脏疾病的患者做手术时,往往要用一种称为 “人工心脏泵"(血泵)的体外装置来代替心脏,以推动血液循环。如图是该装置的示意图,线圈AB固定在用软铁制成的活塞柄上(相当于一个电磁铁),通电时线圈与活塞柄组成的系统与固定在左侧的磁体相互作用,从而带动活塞运动。活塞筒通过阀门与血管相通,阀门S1只能向活塞筒外开启,S2只能向活塞筒内开启。
(1)线圈中的电流从B流向A时,螺线管的左边是   (选填“N”或“S")极。
(2)若线圈中的电流从A流向B时,活塞向    运动(选填“左”或“右"),血液的流向是   。(选填“从②流向①”或“从③流向②”)状态。
14.两根平行导线通电后,会出现如图甲所示的现象(图中实线、虚线分别表示通电前、后的情况)。由此可以推断:在图乙所示的电路中,当开关S闭合时,螺线管的长度会   (填“变长”或“变短”,不考虑摩擦力)。你判断的依据:   。
15.(2023八下·滨江期末)在“探究电磁铁磁性强弱与电流大小关系”的实验中,小明用绝缘细线将电磁铁M悬挂在铁架台上,并保持它与软铁块P的距离不变。以下是他的部分实验步骤:
①断开开关S,按图组装实验电路,将滑动变阻器的滑片置于最右端。用已调零的电子测力计测出软铁块P对测力计的压力F0并记录在表格中;
②闭合开关S,调节滑动变阻器的滑片到适当位置,读出电流表的示数I和电子测力计的示数F,并将I、F的数据记录在表格中;
③仿照步骤②再进行两次实验。
实验次数 1 2 3
F0/N 0.9 0.9 0.9
I/A 0.34 0.40 0.44
F/N 0.84 0.82 0.81
(1)实验中小明是通过   来判定电磁铁磁性强弱的。
(2)闭合开关S后,电磁铁下端的磁极为   (选填“N”或“S”)极。
(3)由表中数据可以得出的实验结论是:   。
(4)本实验中,滑动变阻器除了保护电路的作用外,还起到   的作用。
16.某小组在探究“电磁铁磁性强弱与哪些因素有关”的实验中,设计了如图所示电路,并进行了实验,当电磁铁通电时会对磁体产生力的作用,使指针绕O点转动,记录指针A所指的刻度值大小,实验结果如下表。
线圈接线点 接线柱1 接线柱2 接线柱3
实验次数 1 2 3 4 5 6 7 8 9
电流/A 0.8 1.2 1.6 0.8 1.2 1.6 0.8 1.2 1.6
指针所指的刻度值大小 0.8 1.2 1.6 0.6 0.9 1.2 0.4 0.6 0.8
(1)进行1、4、7实验基于的假设是   。
(2)实验中,他们将开关S从接线柱“1”换到“2”上时,调节变阻器的滑片P,再次观察电流表示数及指针A所指的刻度值大小,此时调节滑动变阻器是为了   。
(3)写出能使指针反向偏转的具体措施   (写出一条即可)。
17.(2023八下·武义期末)
(1)如图甲所示是电磁学中一个很重要的实验,从实验现象可知   ,这是1820年丹麦物理学家奥斯特发现的;
(2)把直导线弯曲成螺线形,当螺线形线圈插入   后磁性增强,此装置称为电磁铁。为探究电磁铁的磁性与哪些因素有关,小丽同学做出以下猜想:
猜想I:通过电磁铁的电流越大,它的磁性越强。
猜想II:外形相同的电磁铁,线圈的匝数越多,它的磁性越强。
为了检验上述猜想是否正确,小丽所在实验小组通过交流合作设计了以下实验方案:用漆包线(表面涂有绝缘漆的导线)在大铁钉上绕50或100圈,绕制前在大铁钉表面裹一张纸片,纸片的作用是   。制成简单的电磁铁如图乙所示的三种情况。根据小丽的猜想和实验,完成下面填空:(通过观察电磁铁吸引大头针数目多少的不同,来判断磁性强弱的不同)
①通过比较图   两种情况,可以验证猜想I是正确的;
②通过比较C图a、b两电磁铁能否研究猜想II,说明原因   。
18.(2023八下·新昌期末)如图是小明研究“影响电磁铁磁性强弱因素"的装置图。在弹簧上方固定物体A,当导线c与a点相连,闭合开关后,电流表指针发生偏转。
(1)弹簧上方的物体A应由   制成(选填“铜”、“铁”或“铝”)。
(2)当开关闭合后,电磁铁上端应为磁极的   极。
(3)当滑动变阻器R的滑片向左滑动时,电流表指针偏转的角度将会   。
(4)保持滑动变阻器R的滑片位置不变,当导线c由a点改为与b点相连,闭合开关后,可发现电流表指针偏转的角度将会   (选填“变大”或“变小”)。
(5)经过对电磁铁的研究,可得出结论:当线圈匝数一定时,通过电磁铁的电流越大,电磁铁磁性   ;当通过电磁铁的电流一定时,电磁铁线圈的匝数越多,磁性越强。
19.(2023八下·金华期中)学习了电磁知识后,小柯了解到相互靠近的通电导线之间会产生相互作用力。那么这个力的大小和方向与哪些因素有关呢?他将两根导线(可伸长)平行放置后固定(如图 1 甲所示),然后依次通上如图乙、丙、丁所示的电流,通过反复实验证实了他的猜想。请回答:
(1)分析图 1   (选填序号),可知通电导线之间作用力大小与电流大小有关。
(2)得到通电导线之间的相互作用力的方向与电流方向有关的结论,你的依据是  。
(3)如图 2 所示,将一柔软的导线弯成星形,并将其置于光滑水平桌面上,然后将开关 S 闭合,则该星形回路将 。(填字母编号)
A.不会变形 B.会变形,所围面积减小
C.会变形,所围面积增大 D.会变形,所围总面积不变
20.(2023八下·杭州期末)如图为某青少年科技创新小组制作的电流磁效应演示器。有机玻璃管中装有适量的水并固定在小桌上,水中悬浮着一个带有铁钉的浮球。管外绕有匝数可变的线圈(1和2之间为150匝,1和3之间为400匝)。按图示连接好电路后,小组成员开始探究通电螺线管周围磁场强弱的影响因素,步骤如下:
①线圈连接1和2,闭合开关,调节滑动变阻器滑片至电流表示数为0.5A,浮球没有运动;
②继续调节滑片至电流表示数为1.5A,观察到浮球向下运动到线圈附近;
③断开开关,线圈改接1和3后,闭合开关______观察到浮球向下运动到线圈附近。
请回答以下问题:
(1)步骤①②可得出的结论是   。
(2)小组成员通过对比步骤①和③,得出通电螺线管周围磁场强弱与线圈匝数有关,请据此补充步骤③的操作   。
(3)接着某小组成员将电源”+、-”极对调,想要探究通电螺线管周围磁场的方向与电流方向的关系,其他成员还需要将浮球中的铁钉换成   ,才能完成实验。
21.(2022八下·婺城期末)网络上有一“牛人”制作的“电池磁力小火车”的视频。视频中,“牛人”把由铁铷合金制作的超强磁铁分别吸附在电池的正负极两端制成“小火车”,并将其整个放入自制的铜质螺线管中,发现电池与磁铁竟然沿着螺线管向右运动起来,直到从螺线管的另一端穿出(如图1)。小科对“小火车”为什么会运动非常感兴趣,便动手进行了实验。
(1)图1中,两侧磁铁之间的线圈中会有电流通过,他由此推测:只有当线圈中有电流通过时,火车才会受力运动。为验证这一假设,他需要进一步的操作是   ;
(2)预测图2中的小火车将向   (填“左”或“右”)运动;
(3)要让小火车更快速地通过螺线管,可以采取的措施有 (填字母编号);
A.增强磁铁的磁性
B.减少与磁铁接触的那一段螺线管匝数
C.减小电池的电压
D.增大螺线管中电流从而增强其磁场
(4)要使小火车由静止开始顺利通过螺线管,下列摆放方式可行的是 (填字母编号)。
A. B.
C. D.
思维导图
典例分析
举一反三
典例分析
举一反三
典例分析
举一反三
课后巩固
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)