本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
二次函数的图象与性质(五)
[本课知识要点]
1.能通过配方把二次函数化成+k的形式,从而确定开口方向、对称轴和顶点坐标;
2.会利用对称性画出二次函数的图象.
[回顾及创新思维]
我们已经发现,二次函数的图象,可以由函数的图象先向 平移_____个单位,再向____平移____个单位得到,因此,可以直接得出:函数的开口_______,对称轴是_______,顶点坐标是_______.那么,对于任意一个二次函数,如,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?
[实践与探索]
例1.通过配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.
解
因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).
由对称性列表:
x … -2 -1 0 1 2 3 4 …
… -10 0 6 8 6 0 -10 …
描点、连线,如图26.2.7所示.
回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,.
(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.
探索 对于二次函数,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴__________,顶点坐标__________.
例2.已知抛物线的顶点在坐标轴上,求的值.
分析 顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等于0;(2)顶点在y轴上,则顶点的横坐标等于0.
解 ,
则抛物线的顶点坐标是.
当顶点在x轴上时,有 ,
解得 .
当顶点在y轴上时,有 ,
解得 或.
所以,当抛物线的顶点在坐标轴上时,有三个值,分别是 –2,4,8.
[当堂课内练习]
1.(1)二次函数的对称轴是__________.
(2)二次函数的图象的顶点是__________,当x__________时,y随x的增大而减小.
(3)抛物线的顶点横坐标是-2,则=__________.
2.抛物线的顶点是,则、c的值是多少?
[本课课外作业]
A组
1.已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.
2.利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.
(1) (2)
(3) (4)
3.已知是二次函数,且当时,y随x的增大而增大.
(1)求k的值;(2)求开口方向、顶点坐标和对称轴.
B组
4.当时,求抛物线的顶点所在的象限.
5. 已知抛物线的顶点A在直线上,求抛物线的顶点坐标.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网