2024年浙教版数学八年级下册4.3中心对称课后提高练
一、选择题
1.(2023八下·萧山期末)下列四个几何图形中是中心对称图形的是( )
A. B.
C. D.
【答案】A
【知识点】中心对称及中心对称图形
【解析】【解答】解:A、该图形是中心对称图形,A正确;
B、该图形是轴对称图形,不是中心对称图形,B错误;
C、该图形是轴对称图形,不是中心对称图形,C错误;
D、该图形是轴对称图形,不是中心对称图形,D错误,
故答案为:A.
【分析】把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
2.(2023八下·柯桥期末)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A、该图形是轴对称图形,不是中心对称图形,A错误;
B、该图形是轴对称图形,不是中心对称图形,B错误;
C、该图形既是中心对称图形,又是轴对称图形,C正确;
D、该图形既不是轴对称图形,也不是中心对称图形,D错误,
故答案为:C.
【分析】如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;
把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
3.(2023八下·余杭期中)下列平面直角坐标系内的曲线中,既是中心对称图形,也是轴对称图形的是( )
A. 三叶玫瑰线 B. 四叶玫瑰线
C. 心形线 D. 笛卡尔叶形线
【答案】B
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A、该图形是轴对称图形,不是中心对称图形,故A不符合题意;
B、该图形是轴对称图形,是中心对称图形,故B符合题意;
C、该图形是轴对称图形,不是中心对称图形,故C不符合题意;
D、该图形不是轴对称图形,不是中心对称图形,故D不符合题意;
故答案为:B
【分析】中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合,轴对称图形是将一个图形沿某直线折叠后直线两旁的部分互相重合,再对各选项逐一判断.
4.(2022八下·浙江期中)下列英文字母中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】D
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A选项,是轴对称图形,不是中心对称图形,故A选项不符合题意;
B选项,不是轴对称图形,是中心对称图形,故B选项不符合题意;
C选项,是轴对称图形,不是中心对称图形,故C选项不符合题意;
D选项,是轴对称图形,也是中心对称图形,故D选项符合题意.
故答案为:D.
【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
5.(2022八下·南湖期中)下面几个车标,是中心对称图形而不是轴对称图形的是( )
A. B.
C. D.
【答案】D
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A、既是中心对称图形,又是轴对称图形,故本选项不符合题意;
B、是轴对称图形而不是中心对称图形,故本选项不符合题意;
C、是轴对称图形而不是中心对称图形,故本选项不符合题意;
D、是中心对称图形而不是轴对称图形,故本选项符合题意;
故答案为:D.
【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
6.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,使得两张图案构成的图形是中心对称图形.那么它至少旋转( )
A.30° B.60° C.120° D.180°
【答案】B
【知识点】中心对称及中心对称图形
【解析】【解答】解:要使两张图案构成的图形是中心对称图形,
则两张图案构成的图形至少是正六边形,
∵正六边形的中心角是60°,
∴要使得两张图案构成的图形是中心对称图形,它至少旋转60°.
故选:B.
【分析】首先根据图示,可得原来的图案构成一个正三角形;然后要使两张图案构成的图形是中心对称图形,则两张图案构成的图形至少是正六边形;最后根据正六边形的中心角是60°,可得它至少旋转60°,据此解答即可.
7.对右图的对称性判定正确的是( )
A.只是轴对称图形
B.只是中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形也不是中心对称图形
【答案】C
【知识点】中心对称及中心对称图形
【解析】【解答】解:由图形的对称性知右图既是轴对称图形,又是中心对称图形.
故选C.
【分析】根据轴对称图形与中心对称图形的概念求解.
在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.
如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
8.如图,△ABC与△A'B'C'关于点O成中心对称,下列结论中,不成立的是 ( )
A.OB=OB' B.∠ACB=∠A'B'C'
C.点 A 的对称点是点A' D.BC∥B'C'
【答案】B
【知识点】中心对称及中心对称图形
【解析】【解答】解:∵ △ABC与△A'B'C'关于点O成中心对称 ,
∴ OB=OB' , ∠ACB=∠A'C'B', 点A的对称点是点A' , BC∥B'C' ,
故A、C、D正确,B错误.
故答案为:B.
【分析】根据中心对称的性质逐一判断即可.
二、填空题
9.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .
【答案】﹣1
【知识点】中心对称及中心对称图形
【解析】【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),
则a=2,b=﹣3,
a+b=﹣1,
故答案为:﹣1.
【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.
10.(2022八下·拱墅期中)如图是一个中心对称图形,A为对称中心,若 , , ,则 的长为 .
【答案】12
【知识点】含30°角的直角三角形;中心对称及中心对称图形
【解析】【解答】解: 在 中, , ,
,
∵B与B'关于A中心对称,
.
故答案为:12.
【分析】在直角三角形ABC中,根据30度角所对的直角边等于斜边的一半得AB=2AC,然后根据中心对称的性质得BB'=2AB可求解.
11.(2022八下·慈溪期中)在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是 (填序号).
【答案】②⑤⑥
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:①平行四边形是中心对称图形,不是轴对称图形,不符合题意;
②正方形既是轴对称图形,也是中心对称图形,符合题意;
③等边三角形既是轴对称图形,不是中心对称图形,不符合题意;
④等腰梯形是轴对称图形,不是中心对称图形,不符合题意.
⑤圆既是轴对称图形,也是中心对称图形,符合题意.
⑥正八边形是轴对称图形,也是中心对称图形,符合题意.
故答案为:②⑤⑥.
【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;
在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形;根据定义并结合图形即可判断求解.
12.(2022八下·北仑期中)如图,已知 AB=3,AC=1,∠D=90°,△DEC 与△ABC关于点C成中心对称,则AE的长是 .
【答案】
【知识点】三角形全等及其性质;勾股定理;中心对称及中心对称图形
【解析】【解答】解:∵△DEC 与△ABC关于点C成中心对称,
∴△DEC≌△ABC,
∵AB=3,AC=1,
∴DE=3,CD=1,
∴AD=2,
又∵∠D=90°,
∴AE===.
故答案为:.
【分析】根据成中心对称图形的性质可得△DEC≌△ABC,由全等性质得DE=3,CD=1,从而得AD=2,再由勾股定理求得AE的长度即可.
三、解答题
13.已知点A(4,5)、B(6,﹣3)关于点M成中心对称,试确定点M点坐标.
【答案】解:如图所示:点M即为所求,则M(5,1).
【知识点】中心对称及中心对称图形
【解析】【分析】利用已知建立坐标系,进而得出段线AB的中点M的位置.
14.(2023八下·东阳期末)在的方格中,选择个小方格涂上阴影,请仔细观察图中的六个图案的对称性,按要求回答.
(1)请在六个图案中,选出三个具有相同对称性的图案.
选出的三个图案是 填写序号;
它们都是 图形填写“中心对称”或“轴对称”;
(2)请在图2中,将1个小方格涂上阴影,使整个的方格也具有(1)中所选图案相同的对称性.
【答案】(1)①③⑤;轴对称;
(2)解:如图所示,
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:(1)该图案是轴对称图形;该图案是中心对称图形;该图案是轴对称图形;该图案是中心对称图形;该图案是轴对称图形;该图案是中心对称图形,
选出的三个图案是;它们都是轴对称图形,
故答案为:;轴对称.
【分析】(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;
把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
(2)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.
15.课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.
【答案】(1)解:延长FD到G,使得DG=DF,连接BG、EG.
(或把△CFD绕点D逆时针旋转180°得到△BGD),
∴CF=BG=DF=DG,
∵DE⊥DF,
∴EF=EG.
在△BEG中,BE+BG>EG,即BE+CF>EF.
(2)解:若∠A=90°,则∠EBC+∠FCB=90°,
由(1)知∠FCD=∠DBG,EF=EG,
∴∠EBC+∠DBG=90°,即∠EBG=90°,
∴在Rt△EBG中,BE2+BG2=EG2,
∴BE2+CF2=EF2.
【知识点】中心对称及中心对称图形
【解析】【分析】(1)可按阅读理解中的方法构造全等,把CF和BE转移到一个三角形中求解.
(2)由(1)中的全等得到∠C=∠CBG.∵∠ABC+∠C=90°,∴∠EBG=90°,可得三边之间存在勾股定理关系.
1 / 12024年浙教版数学八年级下册4.3中心对称课后提高练
一、选择题
1.(2023八下·萧山期末)下列四个几何图形中是中心对称图形的是( )
A. B.
C. D.
2.(2023八下·柯桥期末)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.(2023八下·余杭期中)下列平面直角坐标系内的曲线中,既是中心对称图形,也是轴对称图形的是( )
A. 三叶玫瑰线 B. 四叶玫瑰线
C. 心形线 D. 笛卡尔叶形线
4.(2022八下·浙江期中)下列英文字母中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5.(2022八下·南湖期中)下面几个车标,是中心对称图形而不是轴对称图形的是( )
A. B.
C. D.
6.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,使得两张图案构成的图形是中心对称图形.那么它至少旋转( )
A.30° B.60° C.120° D.180°
7.对右图的对称性判定正确的是( )
A.只是轴对称图形
B.只是中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形也不是中心对称图形
8.如图,△ABC与△A'B'C'关于点O成中心对称,下列结论中,不成立的是 ( )
A.OB=OB' B.∠ACB=∠A'B'C'
C.点 A 的对称点是点A' D.BC∥B'C'
二、填空题
9.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .
10.(2022八下·拱墅期中)如图是一个中心对称图形,A为对称中心,若 , , ,则 的长为 .
11.(2022八下·慈溪期中)在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是 (填序号).
12.(2022八下·北仑期中)如图,已知 AB=3,AC=1,∠D=90°,△DEC 与△ABC关于点C成中心对称,则AE的长是 .
三、解答题
13.已知点A(4,5)、B(6,﹣3)关于点M成中心对称,试确定点M点坐标.
14.(2023八下·东阳期末)在的方格中,选择个小方格涂上阴影,请仔细观察图中的六个图案的对称性,按要求回答.
(1)请在六个图案中,选出三个具有相同对称性的图案.
选出的三个图案是 填写序号;
它们都是 图形填写“中心对称”或“轴对称”;
(2)请在图2中,将1个小方格涂上阴影,使整个的方格也具有(1)中所选图案相同的对称性.
15.课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.
答案解析部分
1.【答案】A
【知识点】中心对称及中心对称图形
【解析】【解答】解:A、该图形是中心对称图形,A正确;
B、该图形是轴对称图形,不是中心对称图形,B错误;
C、该图形是轴对称图形,不是中心对称图形,C错误;
D、该图形是轴对称图形,不是中心对称图形,D错误,
故答案为:A.
【分析】把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
2.【答案】C
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A、该图形是轴对称图形,不是中心对称图形,A错误;
B、该图形是轴对称图形,不是中心对称图形,B错误;
C、该图形既是中心对称图形,又是轴对称图形,C正确;
D、该图形既不是轴对称图形,也不是中心对称图形,D错误,
故答案为:C.
【分析】如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;
把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
3.【答案】B
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A、该图形是轴对称图形,不是中心对称图形,故A不符合题意;
B、该图形是轴对称图形,是中心对称图形,故B符合题意;
C、该图形是轴对称图形,不是中心对称图形,故C不符合题意;
D、该图形不是轴对称图形,不是中心对称图形,故D不符合题意;
故答案为:B
【分析】中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合,轴对称图形是将一个图形沿某直线折叠后直线两旁的部分互相重合,再对各选项逐一判断.
4.【答案】D
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A选项,是轴对称图形,不是中心对称图形,故A选项不符合题意;
B选项,不是轴对称图形,是中心对称图形,故B选项不符合题意;
C选项,是轴对称图形,不是中心对称图形,故C选项不符合题意;
D选项,是轴对称图形,也是中心对称图形,故D选项符合题意.
故答案为:D.
【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
5.【答案】D
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:A、既是中心对称图形,又是轴对称图形,故本选项不符合题意;
B、是轴对称图形而不是中心对称图形,故本选项不符合题意;
C、是轴对称图形而不是中心对称图形,故本选项不符合题意;
D、是中心对称图形而不是轴对称图形,故本选项符合题意;
故答案为:D.
【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
6.【答案】B
【知识点】中心对称及中心对称图形
【解析】【解答】解:要使两张图案构成的图形是中心对称图形,
则两张图案构成的图形至少是正六边形,
∵正六边形的中心角是60°,
∴要使得两张图案构成的图形是中心对称图形,它至少旋转60°.
故选:B.
【分析】首先根据图示,可得原来的图案构成一个正三角形;然后要使两张图案构成的图形是中心对称图形,则两张图案构成的图形至少是正六边形;最后根据正六边形的中心角是60°,可得它至少旋转60°,据此解答即可.
7.【答案】C
【知识点】中心对称及中心对称图形
【解析】【解答】解:由图形的对称性知右图既是轴对称图形,又是中心对称图形.
故选C.
【分析】根据轴对称图形与中心对称图形的概念求解.
在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.
如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
8.【答案】B
【知识点】中心对称及中心对称图形
【解析】【解答】解:∵ △ABC与△A'B'C'关于点O成中心对称 ,
∴ OB=OB' , ∠ACB=∠A'C'B', 点A的对称点是点A' , BC∥B'C' ,
故A、C、D正确,B错误.
故答案为:B.
【分析】根据中心对称的性质逐一判断即可.
9.【答案】﹣1
【知识点】中心对称及中心对称图形
【解析】【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),
则a=2,b=﹣3,
a+b=﹣1,
故答案为:﹣1.
【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.
10.【答案】12
【知识点】含30°角的直角三角形;中心对称及中心对称图形
【解析】【解答】解: 在 中, , ,
,
∵B与B'关于A中心对称,
.
故答案为:12.
【分析】在直角三角形ABC中,根据30度角所对的直角边等于斜边的一半得AB=2AC,然后根据中心对称的性质得BB'=2AB可求解.
11.【答案】②⑤⑥
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:①平行四边形是中心对称图形,不是轴对称图形,不符合题意;
②正方形既是轴对称图形,也是中心对称图形,符合题意;
③等边三角形既是轴对称图形,不是中心对称图形,不符合题意;
④等腰梯形是轴对称图形,不是中心对称图形,不符合题意.
⑤圆既是轴对称图形,也是中心对称图形,符合题意.
⑥正八边形是轴对称图形,也是中心对称图形,符合题意.
故答案为:②⑤⑥.
【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;
在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形;根据定义并结合图形即可判断求解.
12.【答案】
【知识点】三角形全等及其性质;勾股定理;中心对称及中心对称图形
【解析】【解答】解:∵△DEC 与△ABC关于点C成中心对称,
∴△DEC≌△ABC,
∵AB=3,AC=1,
∴DE=3,CD=1,
∴AD=2,
又∵∠D=90°,
∴AE===.
故答案为:.
【分析】根据成中心对称图形的性质可得△DEC≌△ABC,由全等性质得DE=3,CD=1,从而得AD=2,再由勾股定理求得AE的长度即可.
13.【答案】解:如图所示:点M即为所求,则M(5,1).
【知识点】中心对称及中心对称图形
【解析】【分析】利用已知建立坐标系,进而得出段线AB的中点M的位置.
14.【答案】(1)①③⑤;轴对称;
(2)解:如图所示,
【知识点】轴对称图形;中心对称及中心对称图形
【解析】【解答】解:(1)该图案是轴对称图形;该图案是中心对称图形;该图案是轴对称图形;该图案是中心对称图形;该图案是轴对称图形;该图案是中心对称图形,
选出的三个图案是;它们都是轴对称图形,
故答案为:;轴对称.
【分析】(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;
把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
(2)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.
15.【答案】(1)解:延长FD到G,使得DG=DF,连接BG、EG.
(或把△CFD绕点D逆时针旋转180°得到△BGD),
∴CF=BG=DF=DG,
∵DE⊥DF,
∴EF=EG.
在△BEG中,BE+BG>EG,即BE+CF>EF.
(2)解:若∠A=90°,则∠EBC+∠FCB=90°,
由(1)知∠FCD=∠DBG,EF=EG,
∴∠EBC+∠DBG=90°,即∠EBG=90°,
∴在Rt△EBG中,BE2+BG2=EG2,
∴BE2+CF2=EF2.
【知识点】中心对称及中心对称图形
【解析】【分析】(1)可按阅读理解中的方法构造全等,把CF和BE转移到一个三角形中求解.
(2)由(1)中的全等得到∠C=∠CBG.∵∠ABC+∠C=90°,∴∠EBG=90°,可得三边之间存在勾股定理关系.
1 / 1