3.4蛋白质工程的原理和应用(共41张ppt)生物人教版(2019)选择性必修3

文档属性

名称 3.4蛋白质工程的原理和应用(共41张ppt)生物人教版(2019)选择性必修3
格式 pptx
文件大小 3.6MB
资源类型 教案
版本资源 人教版(2019)
科目 生物学
更新时间 2024-04-28 09:32:27

图片预览

文档简介

(共41张PPT)
3.4 蛋白质工程的原理和应用
















1.了解蛋白质工程的概念及蛋白质工程崛起的缘由。
2.简述蛋白质工程的基本原理和过程,培养运用逆向思维分析和解决问题的能力。
3.举例说明蛋白质工程实际的应用。
学习目标:
你见过用细菌画画吗?右图是用发出不同颜色荧光的细菌“画"的美妙图案。这些细菌能够发出荧光,是因为在它们的体内导入了荧光蛋白的基因。
最早被发现的荧光蛋白是绿色荧光蛋白,科学家通过改造它,获得了黄色荧光蛋白等。这些荧光蛋白在细胞内生命活动的检测、肿瘤的示踪研究等领域有着重要应用。
从社会中来
那么,科学家是怎样对蛋白质分子进行设计和改造的呢?
用细菌 “画”的画
蛋白质工程的概念
对蛋白质分子结构的设计和改造是通过蛋白质工程实现的。
以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过改造或合成基因,来改造现有蛋白质,或制造一种新的蛋白质,以满足人类生产和生活的需求。
(1)基础:蛋白质分子的结构规律及其与生物功能的关系
(2)途径:改造或合成基因。
(5)与基因工程的关系:在基因工程的基础上,延伸出来的第二代基因工程。
(3)操作对象:
基因
(4)目的:改造现有蛋白质,或制造一种新的蛋白质,以满足人类生产和生活的需求。
为什么说蛋白质工程是第二代基因工程
因为对现有蛋白质的改造或制造新的蛋白质,必须通过改造或合成基因实现。
一、蛋白质工程崛起的缘由
2.基因工程的实质:将一种生物的基因转移到另一种生物体内,后者可以产生它本不能产生的蛋白质,进而表现出新的性状。
1.理论和技术条件:分子生物学、晶体学以及计算机技术的迅猛发展,为蛋白质工程的崛起奠定了基础
①基因工程存在不足:基因工程原则上只能生产自然界已存在的蛋白质。
3.崛起的缘由
②天然蛋白质存在不足:天然蛋白质的结构和功能符合特定物种生存的需要,却不一定完全符合人类生产和生活的需要。
实例:玉米中赖氨酸的含量较低,原因是赖氨酸合成过程中的两种关键酶-----天冬氨酸激酶和二氢吡啶二羧酸合成酶的活性,受细胞内赖氨酸浓度的影响较大。赖氨酸达到一定浓度就会抑制这两种酶的活性,赖氨酸含量很难提高
天冬氨酸激酶
(352位的苏氨酸)
二氢吡啶二羧酸合成酶(104位的天冬酰胺)
玉米中赖氨酸含量比较低
玉米中赖氨酸含量可提高数倍
天冬氨酸激酶
(异亮氨酸)
二氢吡啶二羧酸合成酶(异亮氨酸)
改造
改造
二、蛋白质工程的基本原理
1.蛋白质工程的目标:根据人们对蛋白质功能的特定需求,对蛋白质的结构进行设计改造。
改造基因。原因:①任何一种天然蛋白质都是由基因编码的,改造了相应基因即对相应蛋白质进行了改造,而且改造的性状可以遗传下去。如果对蛋白质直接改造,即使改造成功,被改造的性状还是无法遗传。②对基因进行改造比对蛋白质直接改造要容易操作,难度要小得多。
思考:对天然蛋白质改造是直接改造蛋白质还是改造控制其合成的基因 为什么
2.实质:
通过改造或合成基因,定向改造现有蛋白质,或制造新的蛋白质
4.蛋白质工程的基本思路
从预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到并改变相对应的脱氧核苷酸序列(基因)或合成新的基因→获得所需要的蛋白质。
3.天然蛋白质的合成途径:(遵循中心法则)
基因  表达(转录和翻译)   形成氨基酸序列的多肽
链    形成具有高级结构的蛋白质    行使生物功能
DNA
RNA
蛋白质
转录
翻译
逆转录
复制
5.原理:
中心法则的逆推
蛋白质
(三维结构)
预期功能
生物功能
翻译
折叠
行使
转录
设计
推测
改造或合成
mRNA
目的基因
蛋白质工程经常要借助计算机来建立蛋白质的三维结构模型;要利用晶体学技术来获得蛋白质的结晶体,然后通过X射线衍射技术,分析晶体的结构;要用到基因的定点突变技术来进行碱基的替换。
蛋白质分子的三维晶体结构模型
血红蛋白的三维结构模型
基因的定点突变技术
比较 基因定点诱变 基因突变
相同点 发生的过程 结果 不同点 场所
手段
方向
DNA复制过程中
产生新基因,从而产生新性状
生物体外
生物体内
定向改造
不定向性
PCR技术
物理化学方法
5.蛋白质工程与基因工程的区别与联系
蛋白质工程 基因工程
区 别 起点 预期的蛋白质功能 目的基因
过程 预期蛋白质功能→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列→获得需要的蛋白质 获取目的基因→构建基因表达载体→将目的基因导入受体细胞→目的基因的检测与鉴定
实质 定向改造或生产人类所需要的蛋白质 定向改造生物的遗传特性,以获得人类所需的生物类型或生物产品
结果 可生产自然界不存在的蛋白质 只能生产自然界已存在的蛋白质
蛋白质工程 基因工程
原理 中心法则的逆转 基因重组
联系 ①蛋白质工程是在基因工程的基础上延伸出来的第二代基因工程,对现有蛋白质的改造或制造新的蛋白质必须通过基因修饰或基因合成来实现,蛋白质工程离不开基因工程 ②基因工程中所用的某些酶也需要通过蛋白质工程进行修饰或改造,以提高其功能 6、“二看法”判断基因工程和蛋白质工程
旁栏思考题
你知道人类蛋白质组计划吗?它与蛋白质工程有什么关系?我国科学家承担了什么任务?
人类蛋白质组计划是继人类基因组计划之后,生命科学乃至自然科学领域重大的国际合作科研项目。2001年,国际人类蛋白质组组织宣布成立。2003年,该组织正式提出启动两项重大国际合作项目:一项是由中国科学家牵头执行的“人类肝脏蛋白质组计划”;另一项是由美国科学家牵头执行的“人类血浆蛋白质组计划”;由此拉开了人类蛋白质组计划的帷幕。
“人类肝脏蛋白质组计划”是国际上第一个人类组织器官的蛋白质组计划,由我国贺福初院土牵头,这是中国科学家第一次领衔重大国际科研协作计划。它的目标是通过对肝脏蛋白质高通量、规模化的研究,解析肝脏蛋白质在生理、病理过程中的功能意义,为重大肝病的预防、诊断、治疗和新药的研发提供重要的科学依据。2010年,该计划“两谱、两图、三库”的目标初步实现。我国科学家完成了人类肝脏蛋白质组表达谱和修饰谱,绘制了蛋白质相互作用连锁图和定位图。“三库”则是建立符合国际标准的肝脏标本库、发展规模化抗体制备技术并建立肝脏蛋白质抗体库和建立完整的肝脏蛋白质组数据库。人类蛋白质组计划取得的成果有力推动了蛋白质工程的发展,为它提供了重要的理论支持。2014年6月,中国人类蛋白质组计划启动。
某多肽链的一段氨基酸序列是:
思考:
1.怎样得出决定这一段肽链的脱氧核苷酸序列
2.确定目的基因的碱基序列后,怎样合成或改造目的基因?
思考·讨论
丙氨酸
苯丙氨酸
色氨酸
谷氨酸
赖氨酸
思考与讨论
1.怎样得出决定这一段肽链的脱氧核苷酸序列?推测出的基因中的碱基序列是否唯一 请把相应的碱基序列写出来。
每种氨基酸都有对应的密码子,只要査一下密码子表,就可以将题中的氨基酸序列的编码序列査出来。但是由于一个氨基酸是由一个或多个密码子编码的,因此其碱基排列组合起来就比较复杂,至少可以排列出32种,可以根据学过的排列组合的知识自己排列一下。首先应该根据密码子推出mRNA序列为GCU(或C,或A,或G) UGGAAA (或G)UUU(或C),再根据碱基互补配对原则推出脱氧核苷酸序列为CGA(或G,或T或C)ACTT(或C)CTT(或C)AAA(或G)。
确定目的基因的碱基序列后,可以人工合成目的基因或从基因文库中获取目的基因。对基因的改造经常会用到基因定点突变技术来进行碱基的替换、增添等。
2. 确定目的基因的碱基序列后,怎样才能合成或改造目的基因?
3.蛋白质工程的应用
天然胰岛素制剂容易形成二聚体或六聚体,皮下注射后延缓疗效,通过改造胰岛素基因,使胰岛素上B28位脯氨酸替换为天冬氨酸或者将它与B29位的赖氨酸交换位置,从而有效抑制胰岛素聚合,由此研发出速效胰岛素类似物产品。
①研发出速效胰岛素类似物
(1)医药工业方面
②延长干扰素体外保存时间。
干扰素在体外保存相当困难,将干扰素分子上的一个半胱氨酸变成丝氨酸,在-70 ℃的条件下,干扰素可以保存半年。
③改造抗体:
小鼠单克隆抗体会使人产生免疫反应,将小鼠抗体上结合抗原的区域“嫁接”到人的抗体上,经改造的抗体诱发免疫反应的强度会减低很多。
(2)其他工业方面
改进酶的性能或开发新的工业用酶,提高酶的使用价值
如:枯草杆菌蛋白酶具有水解蛋白质的作用,常被用于洗涤剂工业、丝绸工业等
迄今为止,利用蛋白质工程获得的该酶的突变体已有上百种,从中可筛选出一些符合工业化生产需求的突变体。
(3)农业方面
改造某些参与调控光合作用的酶,提高植物光合作用的效率,增加粮食产量;
利用蛋白质工程的思路设计优良微生物农药,通过改造微生物蛋白质的结构,增强其防治病虫害的效果。
血红蛋白的三维结构模型
要设计出更符合人类需要的蛋白质还需不断地攻坚克难。随着科技的发展,蛋白质工程将会给人带来更多的福祉。
原因:蛋白质发挥功能必须依赖于正确的高级结构,这种高级结构很复杂,目前对其了解还很不够,还需探索。
蛋白质工程—难度大
异想天开
能不能根据人类需要的蛋白质的结构,设计相应的基因,导入合适的宿主细胞中,让宿主细胞生产人类所需要的蛋白质食品呢?
理论上讲可以,但目前还没有真正成功的例子。利用改造后的动物细胞、微生物细胞等可以生产人类需要的蛋白质,但这些蛋白质往往都是自然界中已经存在的蛋白质,并非完全是人工设计出来的、自然界中不存在的蛋白质。主要原因是蛋白质的高级结构非常复杂,人类对大多数蛋白质的高级结构和蛋白质在生物体内如何行使功能了解得还不够,很难设计出一个全新的而又具有功能的蛋白质。即使设计并获得了一个全新的蛋白质,它的生理生化特性、用它生产的蛋白质食品的安全性等都需要长期深入的研究。
到社会中去
酶制剂在食品工业、医药工业等方面都有广泛的应用。现在,酶制剂的生产已经形成一个市场可观的新兴产业。蛋白质工程的应用又为酶制剂产业的发展提供了强大助力。请查阅资料,了解我国酶制剂产业发展的现状和趋势,分析蛋白质工程在酶制剂产业中的作用。
酶用作工业催化剂,比无机催化剂具有更大的优越性,主要体现在以下几个方面:由于酶促反应能在常温、常压和中性pH条件下进行,因此可以节省大量的能源和设备投资;生产过程中不会造成严重的污染,符合环境保护的要求;生产过程简单、效率高,产品质量好,生产成本低。因此,酶制剂在工业领域得到了广泛的应用。
近年来,通过引进国外先进设备、优良菌种以及开发新型酶制剂,我国酶制剂产业保持了较快的增长态势,品种越来越丰富,产品的市场竞争力也在不断提升。2016年,我国工业酶制剂年产量达120万吨,年增长率保持在10%左右。在全球范围内,我国酶制剂的市场份额已占到了30%左右,我国进入酶制剂生产大国的行列。
在酶制剂产业中,蛋白质工程被广泛用于开发酶的新品种或改进酶的性能,如提高酶的热稳定性,增加某些被用作去污剂的酶的去污效率等。
活学活练
蛋白质工程中对蛋白质分子进行设计时,以下方案合理的是(  )
①进行少数氨基酸的替换
②对不同来源的蛋白质的拼接
③从预期蛋白质的功能出发去推测氨基酸排列顺序
④直接改变蛋白质的空间结构
A.①② B.①②③
C.②③④ D.①②④
B
课堂回眸
练习与应用
一、概念检测
1. 判断下列相关表述是否正确。
(1)基因工程需要在分子水平对基因进行操作,蛋白质工程不需要对基因进行操作。 ( )
(2)蛋白质工程需要改变蛋白质分子的所有氨基酸序列。( )
(3)蛋白质工程可以改造酶,提高酶的热稳定性。 ( )
2. 蛋白质工程是在深入了解蛋白质分子的结构与功能关系的基础上进行的,它最终要达到 的目的是 ( )
A. 分析蛋白质的三维结构
B. 研究蛋白质的氨基酸组成
C. 获取编码蛋白质的基因序列信息
D. 改造现有蛋白质或制造新的蛋白质,满 足人类的需求
x
x

D
3. 水蛭素是一种蛋白质,可用于预防和治疗血栓。研究人员发现,用赖氨酸替换水蛭素第 47位的天冬酰胺可以提高它的抗凝血活性。在这 项替换研究中,目前可行的直接操作对象是( )
A.基因 B.氨基酸  
C.多肽链 D.蛋白质
A
二、拓展应用
T4溶菌酶是一种重要的工业用酶,但是它在温度较高时容易失去活性。为了提高T4溶菌酶的耐热性,科学家首先对影响T4溶菌酶耐热性的一些重要结构进行了研究。然后以此为依据对相关基因进行改造,使T4溶菌酶的第3位异亮氨酸变为半胱氨酸。于是,在该半胱氨酸与第97位的半胱氨酸之间形成了一个二硫键,T4溶菌酶的耐热性得到了提高。这项工作属于什么工程的范畴?在该实例中引起T4溶菌酶空间结构发生改变的根本原因是什么?如果要将该研究成果应用到生产实践,还需要做哪些方面的工作?
这项工作属于蛋白质工程的范畴。引起T4溶菌酶空间结构发生改变的根本原因是基因的碱基序列发生了变化。如果要将改造后的T4溶菌酶应用于生产实践,还有很多工作需要做。例如由于改造后酶的空间结构发生了变化,因此它的一些基本特性需要重新明确,包括它能耐受的温度范围、催化反应的最适温度、酶活力的大小等;需要建立规模化生产该酶的技术体系,评估生产成本等。
复习与提高
1.某动物体内含有研究者感兴趣的目的基因,研究者欲将该基因导入大肠杆菌的质粒中保存。该质粒含有氨苄青霉素抗性基因(AmpR)、LacZ基因及一些酶切位点,其结构和简单的操作步骤如下图所示。
请根据以上信息回答下列问题。
(1 )在第②步中,应怎样选择限制酶?
应选择用相同的限制酶或切割能产生相同末端的限制酶切割质粒和含有目的基因的DNA片段,并且注意限制酶的切割位点不能位于目的基因的内部,以防破坏目的基因,限制酶也不能破坏质粒的启动子、终止子、标记基因、复制原点等结构。
(2)在第③步中,为了使质粒DNA与目的基因能连接,还需要在混合物中加入哪种物质?
(3)选用含有AmpR和LacZ基因的质粒进行实验有哪些优势?
该质粒便于进行双重筛选。标记基因AmpR基因可用于检测质粒是否导入了大肠杆菌,一般只有导入了质粒的大肠杆菌才能在添加了青霉素的培养基上生长。而由于LacZ基因的效应,这些生长的菌落可能出现两种颜色:含有空质粒(没有连接目的基因的质粒)的大肠杆菌菌落呈蓝色;含有重组质粒的大肠杆菌菌落呈白色。
(4)含有重组质粒的大肠杆菌菌落将呈现什么颜色?为什么?
含有重组质粒的大肠杆菌菌落呈白色。因为目的基因的插入破坏了LacZ基因的结构,使其不能正常表达,形成β-半乳糖苷酶,底物X-gal也就不会被分解。
加入DNA连接酶。
2. 科学家将 Oct3/4、Sox2、c-Myc 和Klf4基因通过逆转录病毒转入小鼠成纤维细胞中,然后在培养ES细胞的培养基上培养这些细胞。2 3周后,这些细胞显示出ES细胞的形态、具有活跃的分裂能力,它们就是iPS细胞。请回答下列问题。
(1)在这个实验过程中,逆转录病毒的作用是什么?
逆转录病毒是载体,能将外源基因Oct3/4、Sox2、c-Myc和KIf4送入小鼠成纤维细胞。
(2)如何证明iPS细胞的产生不是由于培养基的作用?
可以设置对照组。将转入外源基因和没有转人外源基因的细胞分别培养在相同的培养基中,并确保其他培养条件相同。如果只有转入外源基因的细胞转化成了iPS细胞,就可以证明iPS细胞的产生不是由于培养基的作用。
(3 )如果要了解 Oct3/4、Sox2、c-Myc 和Klf4基因在诱导iPS细胞时,每个基因作用的相对大小,该如何进行实验?请你给出实验设计的思路。
可以依次去掉1个基因,将其他3个基因转入小鼠成纤维细胞中,然后通过与转入4个基因的小鼠成纤维细胞的诱导情况进行比较,来推测缺失的那个基因对诱导iPS细胞的影响,进而判断每个基因作用的相对大小。(其他合理答案均可)
(4)若将病人的皮肤成纤维细胞诱导成iPS 细胞,再使它转化为需要的细胞,用这些细胞给该病人治病,是否会引起免疫排斥反应?iPS细胞具有分裂活性,用它进行治疗时可能存在什么风险?
不会引起免疫排斥反应,因为在诱导转化的过程中细胞的遗传物质没有发生变化,理论上产生的还是“自体”细胞。iPS细胞拥有分化为各种细胞的潜能,因此存在分化成肿瘤细胞的风险。
3. 水稻根部一般没有根瘤菌,在种植时常需要施加氮肥。科学家想利用基因工程技术来减少施用氮肥的生产成本及可能造成的环境污染,他们提出了以下两种方案。
方案一 把根瘤菌的固氮相关基因导入水稻根系微生物中,使微生物能在根系处固氮,从而减少氮肥的施用量。
方案二 直接将固氮相关基因导入水稻细胞中,建立水稻的“小型化肥厂”,让水稻直接固氮,这样就可以免施氮肥了。
(1)请评估这两种方案哪种更容易实现。
从亲缘关系的远近来看,固氮相关基因可能更容易在水稻根系微生物中稳定存在和表达,进而使其具有固氮的能力。(其他合理答案均可)
(2)如果两个方案都实现的话,你认为哪种更值得推广?请说出你的理由。
此题不要求有唯一的答案,可从便捷性、安全性、经济性等角度进行分析,言之成理即可。例如,从便捷性角度认为能固氮的水稻新品种更值得推广;或从转基因安全性角度认为能固氮的水稻根系微生物更值得推广等。