3.1平方根
一、教学目标
(1):解平方根和算术平方根的概念,了解平方与开平方的关系。
(2)学会平方根、算术平方根的表示法和平方根、算术平方根,并运用以上知识解决实际问题。
(3)学习从特殊到一般的数学思想方法,培养学生从实践到理论,从具体到抽象的辨证唯物主义观点。
2 、教学重点和难点
2.1 重点: 平方根的概念。
2.2难点:平方根的概念和平方根的表示方法较为抽象,是本节课的难点。
3、教学方法
本着以人为本的教育理念,主动地发展学生的个性特长,让学生学会学习,培养学生可持续发展学习的能力,本节课主要采用探究式和启发式的教学方法。
4、教学过程
4.1创设情境,设疑引新
(媒体展示)做一做 :同学们,你能将手中两个相同的小正方形,剪一剪,拼一拼,拼成一个大正方形吗?
如果小正方形的边长是1,那大正方形的边长是多少呢?
(设疑之后,引导学生解决这个问题的本质,即求平方等于2的数是什么?)
随后,设计以下练习
(1)张正方形桌面的边长为1.2m,面积是多少?
(2)张正方形桌面的面积为1.44m2,边长是多少m?
第二小题即求一个数的平方等于1.44,这个数是多少?有了以上的铺垫,解决这一问题对于学生来说已是轻而易举,即轻松地引入课题)
(数学是人们对客观世界的定性把握和刻画, ( http: / / www.21cnjy.com )逐渐抽象、概括,形成方法和理论,并进行广泛应用的过程。义务教育阶段的数学课程,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。)
4.2 师生互动,探究新知
4.2.1 概念引入
由具体问题开始讲解:∵(±1.2)2=1.44
∴平方得1.44的数有两个是+1.2,
又边长不为负,因此为1.2m
于是说:∵(±1.2)2=1.44 ∴ ±1.2叫做1.44的平方根
∵ (±2)2=4 ∴±2叫做4的平方根
∵ x = a ∴ x叫做a的平方根
由学生在总结讨论中下定义,教师板书定义 (略)
(这样由具体到抽象,学生易于接受)
4.2.2 概念巩固
在求?的过程中,引导学生明确,左边的数是右边对应的数的平方根,并及时提问“有没有平方得负数的数?为什么?
4.2.3 平方根的性质和表示
学生通过讨论、交流得出平方根的性质:(展示)一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
4.2.4 练习巩固,理解性质
(1)下列各数是否有平方根,请说明理由
① (—3)2 ② 0 2 ③ —0.01
(2)下列说法对不对?为什么?
①4有一个平方根
②只有正数有平方根
③任何数都有平方根
④若 a≥0,a有两个平方根,它们互为相反数
4.2.5平方根的表示法和求一个非负数的平方根
通过引导、交流、提出平方根的表示法、读法以及开平方的概念,然后设计以下练习巩固
例1 求下列各数的平方根
(1)9 (2) (3)0.36 (4)(5)
(注明:(1)带分数作被开方数应化成假分数 (2)不能出现
4.3运用新知,体验成功
4.3.1 课本练习 p69 1 2
4.3.2算术平方根的概念与表示、读法
4.3.3课本练习 p69 3
4.4 探究模型,领会思想
再次探究开头提出的模型,估计的值在哪两个整数之间
(充分应用直观模型,感觉数形结合思想)
4.5反馈小结,布置作业
4.5.1引导小结如下:
本节课你学习了哪些知识?在探索知识的过程中,你用了哪些方法?对你今后的学习有什么帮助?
①知识方面:这节课我们学方根、算术平方根的概念、表示方法、求法及平方根性质
②思维方法:平方运算和开平方运算互为逆运算,可以互相检验
③探究策略:由特殊到一般,再由一般到特殊,是发现问题和解决问题的基本方法和途径。
④用定义解决问题也是常用方法和有力工具。
4.5.2 布置作业
3.2实数
(一)教学目标
1从感性上认可无理数的存在,并通过探索 ( http: / / www.21cnjy.com )说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2
让学生体验用有理数估计一个无理数的大致范围的过程,掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法
3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点
(二)教材分析
“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。由、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。
重点:无理数、实数的意义,在数轴上表示实数。
难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
(三)学生分析
学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。但对七年级学生来讲,思维仍较直观,无理数显得比较抽象,难以理解。对的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。
(四)设计理念
让学生主动参与合作交流, 探索、发现,注重知识形成的过程
(五)教学方法
启发式、探索式教学
(六)教学过程
复习旧知,揭示矛盾,引入概念
回顾书本 3 .1探究活动(图3.2),复习前面所学的有理数的分类, 既然在1与2之间就不是整数,也不是分数,因为如果是分数的话它的平方也应是分数,也就是说 不是有理数,但由此题可知确实是存在的,同时π也是如此。
出现矛盾以后,本课以为例,从开始,来探索无理数的特征,学习实数。
1.2 联系实际创设问题情境:
如果你是布料销售店的售货员,假设我要买剪米布,你将会给我剪多少比较合适?
学生能从上节的图3-2中估计在1与2之间
引导学生借助计算器进行合作学习:
根据上节课 1<<2,确定√2=1.…
确定小数点后第一位数
计算1.12 1.22 1.32 1.42 1.52
1.42 =1.96 <2 1.52 =2.25>2 就不必再算下去了 很明显1.4<<1.5 。
也有学生可根据以往经验马上由1.42 =1.96 <2 1.52 =2.25>2得到1.4<<1.5。
根据以上得:=1.4…
(3) 再求下一位 计算1.412 1.422 等
=1.41…
到此为止,能解决上面问题, 大约剪1.4 米 或1.41米就可以了。
1.3 继续探索特征,得到无理数概念
以上得到的1.4,1.41仅是的近似值,究竟是多少?在解决此问题后, 又出现了新疑点。这样激发学生沿着以上思路继续合作学习,结合书本p71的表格,探索特征。再问:通过以上的探索同学们有什么感受?体验到了什么?学生能在对有理数的已有认知的基础上,知道确实不同于前面所学的有理数,总结的特征:无限、不循环,得到无理数的概念。
(以上学生合作探索特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。)
1.4举例说出无理数,巩固对无理数的理解
1.5 课本p73 课内练习2 掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法
叙述数史,剖析概念,扩展数集
2.1 讲述故事,介绍无理数的来历
师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的? 有生会答:“有道理的数”与“无道理的数”。
师:确实会有我们这种想法,这不,为此,它们还发动了战争呢?(屏幕显示故事,学生讲述)
(教师简单说明无理数的来历,培养学生勇于发现真理的科学精神)
问:听了故事后你们有什么看法,你认为他们根本的区别在哪里?(学生讨论)
教师小结:“无理数”和“有理数”仅是名称而 ( http: / / www.21cnjy.com )已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。
2.2实数的概念: 有理数和无理数统称为实数
(通过故事不仅增加趣味性, ( http: / / www.21cnjy.com )更重要的在于强化无理数与有理数的本质区别,得实数的意义。而且介绍数学史,对揭示数学知识的来源和应用,创造一种探索与研究的气氛,激发学生对数学的兴趣等都起到重要作用)
3练习讨论,反馈调整,巩固概念
(1)无理数的相反数、绝对值
由前面有理数的相反数、绝对值的意义,类似得到无理数的相反数、绝对值的意义。(2) 练习:在 1/7; -π;;0;0.3 ; ;-;0.3131131113…(两个3之间依次多一个1)中
①属于有理数的有:
属于无理数的有:
属于实数的有:
②说出以上各数的相反数、绝对值;
练习:(抢答)判断下面的语句对不对?并说明判断的理由。
①无限小数都是无理数;
②无理数都是无限小数;
③带根号的数都是无理数;
④有理数都是实数,实数不都是有理数;
⑤实数都是无理数,无理数都是实数;
⑥实数的绝对值都是非负实数;
⑦有理数都可以表示成分数的形式。
(通过练习巩固实数概念,分析实数的分类 ( http: / / www.21cnjy.com ),弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。)
数形结合,突破难点,深化概念
(前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。)
我们已经知道每一个有理数都可以用数轴上的点表示出来,那么数轴上的每一个点都表示有理数吗?(思考)
由书本图3.2可知,在数轴正方向上取OA的长等于图3.2中阴影正方形的边长,则点A表示 ,即无理数可以在数轴上找到对应点。可见,数轴上的点对应的数,不都是有理数。(显示数轴)
像每个有理数都可以在数轴上找到一个 ( http: / / www.21cnjy.com )对应点一样,每个无理数也都可以在数轴上找到一个对应点,因此,可以说,每个实数都可以在数轴上找到一个对应点。(想一想:为什么?)反过来,数轴上的每一点也都对应一个有理数或无理数,也就是说,数轴上的每一点都对应一个实数。把这两件事合在一起,我们就说全体实数和数轴上的点一一对应。
利用课件显示帮助理解以上内容,数形 ( http: / / www.21cnjy.com )结合,突破本课的难点:在数轴上用绿色闪烁圆点表示有理数,但这些并不能布满直线,说明数轴上的每一个点并不都表示有理数。再用红色闪烁圆点表示无理数,讲到有理数时绿色圆点闪烁,讲到无理数时绿色圆点闪烁,讲到实数时红、绿圆点同时闪烁,这才成为一整条直线,由此形象、直观展示实数除了有理数外还包括无理数,深化了实数的概念。
5类比迁移,大小比较,例题分析
例 把下列实数表示在数轴上,并比较它们的大小(用“<”号连接):
--1.4,, 3.3, π,--,1.5
(1)让学生阅读题目,讨论比较大小的方法,培 ( http: / / www.21cnjy.com )养学生的自学能力和探索精神,学会类比迁移。比较学生的解题思路,利用数轴比较或利用法则比较的(一般无理数需取近似值),都予以鼓励,抓住一题多解,培养学生思维的发散性和流畅性,有利于学生整体素质提高。
(2)着重讲解在数轴上如何表示无理数,利用数轴进行大小比较
根据书本图3.2 画表示的点的方法:画边长为1的正方形的对角线
在数轴上表示无理数通常有两种情况:
如; 尺规可作的无理数
π 尺规不可作的无理数 ,只能近似地表示
理清关系 ,概括方法,课堂小结
6.1 是人们最早认识的无理数之一,这节课我们 从谈起,谈到了什么?
(1)知识方面:
正有理数 ( 有限小数、无限循环小数 )
有理数 { 零 } 可化为分数
实数{ 负有理数
正无理数 (无限不循环小数)
无理数 { }
负无理数 不能化为分数
实数与数轴上的点一一对应
(2)思维方法:用有理数逼近无理数,求无理数的近似值;数形结合的数学思想
6.2启发学生提出新的疑问,培养学生创造性思维
从谈起,我们还可以谈些什么?
例如: 其他无理数?
圆周率π的近似值?
由出发,可以造出哪些无理数?
无理数与有理数的和、差、积等一定是无理数吗?
无理数与无理数的和、差、积等一定是无理数吗?
等等一系列问题,有待于我们进一步探索、研究
7 布置作业
A组必做, B、C组选做
3.3立方根
教学目标
知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根
教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。
解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学表达和运算能力。
教学重点
本节重点是立方根的意义、性质。
教学难点
本节难点是立方根的求法,立方根与平方根的联系及区别。
教学过程
一、创设情境
电脑显示一个魔方
师:你们喜欢玩魔方吗?这是 ( http: / / www.21cnjy.com )由8个同样大小的单位立方体组成的魔方,这8个小立方体可以重新排列,组成魔方表面的各种不同的美丽图案。现在要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的?
生:思考后回答。
师:体积为27 cm3和体积为1000 cm3的立方体的棱又是要取多少长呢?
生:思考、讨论后回答。
电脑演示:
设计意图:为概念引入作准备并渗透从个别到一般的规律。
二、讲授新课
师:让学生在平方根基础上试述立方根概念。
师(总结):一般地,一个数x的立方等于a,即,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做。如:,则2叫做8的立方根,即;,则是的立方根,即。其中a是被开方数,3是根指数,符号读做“三次根号”。
师:针对前面几个例子,由学生说出27和1000的立方根,并分别指明它们的被开方数和根指数。
生:举例再说明。
三、练一练
求下列各数的立方根:
(1)27; (2); (3); (4); (5)0
解:(1)因为,所以27的立方根是3,即.
(2)因为,所以的立方根是,即.
(3)因为,所以的立方根是,即.
(4)因为,所以的立方根是,即.
(5)因为,所以0的立方根是0,即.
生:总结解题方法和在过程中需要注意的问题。
师:强调(1)求立方根用到立方运算。(2)负数的立方根注意符号。
四、议一议
电脑出示:
(1)一个正数有几个立方根?是正是负?为什么?
(2)是否任何负数都有立方根?如有,有几个?是正是负?
(3)0的立方根是什么?
生:小组讨论交流。
师:引导各小组进行举例、猜想。可提示学生联系上面的“练一练”思考这些问题。
师:(板书结论)每个数a都只有一个立方根,一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。任意数a的立方根可表示为“”,读做“三次根号a”
五、做一做
计算:(1) ; (2)
解:(1) (2)
六、挑战自我
问题:表示a的立方根,那么等于什么?呢?
分析:应抓住立方根的定义去分析,如果,那么x就是a的立方根,即,所以。同样,根据定义,是a的三次方,所以的立方根就是a,即。
七、体验一刻
分别求下列各式的值:
(1); (2); (3); (4)
评析:鼓励学生利用“想一想”中公式:,直接进行计算。
八、归纳小结
先由学生小结,再有教师归纳:
符号中的根指数“3”不能省略。
对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根。
平方根和立方根的区别:
(1)正数有两个平方根,但只有一个立方根;
(2)负数没有平方根,但却有一个立方根。
灵活运用公式:(1);(2);(3)
立方与开立方也互为逆运算。我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根。
十、布置作业
教材78页A组和B组。
3.4 实数的运算
一、教学目标:
了解有理数的运算律和运算法则在实数范围内仍适用。
会进行简单的实数四则运算,进一步认识近似数与有效数学的概念。
能用计算器进行近似计算,并按问题要求对结果取近似值。
二、教学重点
本节的教学重点是实数的运算。
三、教学难点
本节的教学难点是用计算器将实数按要求对结果取近似值。
四、教学准备:科学计算器
五、教学流程:
导入新课:
同学们,你们想飞出地球,遨游太空吗?这是长期以来人类的一种理想,可是地球的吸引力毕竟是太大了,飞机飞得再快也得回到地面,只有当物体速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫第一宇宙速度,计算公式是:(千米/秒),其中千米/秒2是重力加速度。R=6370千米。是地球半径。请你用计算器求出第一宇宙速度,看看有多大?
生:(千米/秒)。
师:可见计算器对实数的运算既快又准,那么本节课我们就学习实数的运算。
练一练:
电脑显示:
由学生写出用字母表示有理数的五条运算律。
师:数从有理数扩展到实数后,有理数的运算律和运算法则在实数范围内同样适用。
计算:__ ; __ ; __
(3)计算:①;
②
(由学生板演):① 原式=
② 原式=
通过以上的练一练,由学生归纳实数的运算法则:
实数的运算顺序是先算乘方和开方,再算乘除,最后算加减,如果遇到有括号,则先进行括号里的运算。
议一议
例1.计算:① (精确到0.001)
② (结果保留4个有效数字)
生:先练习,再同桌交流计算结果。
师:写出解题的规范化:
① 按键顺序: 8 - 9 =
0.748343301
②
例2.计算: (精确到0.01)
解:原式=
=
==18.94427197
做一做
1. 计算:① (精确到0.01)
② (结果保留3个有效数字)
③ (精确到0.01)
生:板演上面的3个小问题。
师:及时纠正。
2. (结果保留3个有效数字)
生:两种解法:
解法Ⅰ: =13.22875656
解法 Ⅱ: ==13.22875656
师:应给予表扬。
生:(小结)实数的运算用计算器简便、准确,最后结果必须按问题的要求取近似值,这一点要引起足够重视。
(五)轻松时刻
①的绝对值是___
____的倒数是
()的值是 ____
____
实数a、b满足 则a = ___ ,b= ___
归纳小结
本节课同学们学到了哪些新知识?
布置作业:书本84页A、B、C组题目。