数学:第1章反比例函数全章教案(浙教版九年级上)

文档属性

名称 数学:第1章反比例函数全章教案(浙教版九年级上)
格式 rar
文件大小 160.1KB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2009-08-21 11:21:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题 1.1 反比例函数
教学目标
1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.
2. 能根据实际问题中的条件确定反比例函数的关系式.
3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体
会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.
教学重点 反比例函数的概念.
教学难点 例3涉及较多的《科学》学科的知识,学生理解问题时有一定的难度.
教学过程
一、创设情景 探究问题
情境1:随着速度的变化,全程所用时间发生怎样的变化?
当路程一定时,速度与时间成什么关系?(s=vt)
汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.
问题:
(1)你能用含有v的代数式表示t吗?
(2)利用(1)的关系式完成下表:
(3)速度v是时间t的函数吗?为什么?
v/(km/h) 60 80 90 100 120
t/h
注(1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).
(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.
(3)结合函数的概念,特别强调唯一性,引导讨论问题(3).
情境2:
当一个长方形面积一定时,长与宽成什么关系
注:这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例
这一情境为后面学习反比例函数概念作铺垫.
情境3:用函数关系式表示下列问题中两个变量之间的关系:
(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;
(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;
(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;
(4)实数m与n的积为-200,m随n的变化而变化.
问题:
(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?
(2)它们有一些什么特征?
(3)你能归纳出反比例函数的概念吗?
一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.
反比例函数的自变量x的取值范围是不等于0的一切实数. 反比例函数的自变量x的取值范围是不等于0的一切实数.
注:这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1;(2)常量k≠0;(3)自变量x的取值范围是x≠0的一切实数;(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.
二、例题教学
【例1】下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?
(1)y=;(2)y=;(3)y=- ;(4)y=-3;(5)y=;(6)y=+2;(7)y=.
注:这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y=或y=kx+b的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x-1,不是x,(2)式y与x-1成反比例,它不是y与x的反比例函数. 对于(4),等号右边不能化成 的形式,它只能转化为的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x,看上去和(2)类似,但它可以化成,即k=-,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.
【例2】(1)在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有  个.
注:这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1)与x成反比例.
(2)若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为    .
注:这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.
【例3】 如图,阻力为1000N,阻力臂长为5cm.设动力为y(N),动力臂长为x(cm)(图中杠杆本身所受重力略去不计.杠杆平衡时,动力×动力臂=阻力×阻力臂).
(1)求y关于x的函数解析式.这个函数是反比例函数吗 如果是,请说出比例系数;
(2)求当x=550时,函数y的值,并说明这个值的实际意义;
(3)利用y与关于x的函数解析式,说明当动力臂长扩大到原来的n(n>1)倍时,所需动力怎样变化
解:(1)根据题意,得了,所以所求函数的解析式为.
这个函数是反比例函数,比例系数是5000.
(2)当x=50时,y=100(N).
这个函数值的实际意义是,当动力臂长为50cm时,所需动力为100N.
(3)设原来的动力臂长为d(cm),动力为;扩大后的动力臂长为nd(cm)(n>1),动力为y2(N).将x=d,x=nd分别代入得,
∴.
所以当动力臂长扩大到原来的n(n>1)倍时,所需动力缩小到原来的.
思考:如果把动力臂长缩小到原来的时,那么所需动力怎样变化
三、巩固练习
完成课内练习1,2
补充练习(供选用)
1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.
(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;
(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;
(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.
2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少?
(1)y=x;(2)y=;(3)xy+2=0;(4)xy=0;(5)x=.
3、已知函数y=(m+1)x是反比例函数,则m的值为    .
四、课堂小结
这节课你学到了什么?还有那些困惑?
五、布置作业
完成作业题1-6.
课题 1.1 反比例函数(2)
教学目标
1.会用待定系数法求反比例函数的解析式.
2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.
3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.
重点 用待定系数法求反比例函数的解析式.
难点 例3要用科学知识,又要用不等式的知识,学生不易理解.
教学过程:
一、复习
1、反比例函数的定义:
判断下列说法是否正确(对”√”,错”×”)
2、思考:如何确定反比例函数的解析式
(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______.
(2)当m为何值时,函数是反比例函数,并求出其函数解析式.
二、新课
【例2】 已知变量y与x成反比例,且当x=0.3时y=-6.(1)写出y与x之间的函数解析式和自变量的取值范围.
思路:∵y与x成反比例

把x=0.3时y=-6代入的,∴,自变量的取值范围是.
小结:要确定一个反比例函数的解析式,只需求出比例系数k.如果已知一对自变量与函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数.
完成练习:
(1)已知y是关于x 的反比例函数,当x=时,y=2,求这个函数的解析式和自变量的取值范围.
(2)说一说它们的求法:
①已知变量y与x-5成反比例,且当x=2时 y=9,写出y与x之间的函数解析式.
②已知变量y-1与x成反比例,且当x=2时 y=9,写出y与x之间的函数解析式.
【例3】 设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A) .
(1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义.
(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评.
三、巩固练习
完成课内练习2、3
补充练习(供选用)
1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围.
(2)求V=9m3时,二氧化碳的密度.
2.已知,与成反比例,并且与时,的值都等于10,求与
之间的函数关系.
四、交流反思
反比例函数的解析式一般有两种情形:
(1)一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;
(2)另一种是变量之间的关系由已学的数量关系直接给出,如例3中的由欧姆定律得到.
五、布置作业:作业题1-6.
课题 1.2反比例函数的图像和性质(1)
教学目标
1.体会并了解反比例函数的图象的意义.
2.能描点画出反比例函数的图象.
3.通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.
教学重点和难点
本节教学的重点是反比例函数的图象及图象的性质.
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点.
教学过程
1.情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗 在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质.转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢
2.探索活动
探索活动1 反比例函数的图象.
由于反比例函数的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值 ——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点
连线:怎样连线 ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2 反比例函数的图象.
可以引导学生采用多种方式进行自主探索活动:
(1)可以用画反比例函数的图象的方式与步骤进行自主探索其图象;
(2)可以通过探索函数与之间的关系,画出的图象.
探索活动3 反比例函数与的图象有什么共同特征
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.
反比例函数(k≠0)的图象是由两个分支组成的曲线.当时,图象在一、三象限:当时,图象在二、四象限.
反比例函数(k≠0)的图象关于直角坐标系的原点成中心对称.
3.例题教学
课本安排例1,(1)巩固反比例函数的图象的性质;(2)是为了引导学生认识到:由于在反比例函数(k≠0)中,只要常数k的值确定,反比例函数就确定了.因此要确定一个反比例函数,只需要一对对应值或图象上一个点的坐标即可.(3)可以先设问:能否利用图象的性质来画图?
4.应用知识,体验成功
完成课本课内练习1、2、3
5.归纳小结,反思提高
(1)用描点法作图象的步骤;
(2)反比例函数的图象的性质.
6.布置作业
课本作业题1-7.
课题 1.2反比例函数的图像和性质(2)
教学目标
1.巩固反比例函数图像和性质,通过对图像的分析,进一步探究反比例函数的增减性.
2.掌握反比例函数的增减性,能运用反比例函数的性质解决一些简单的实际问题.
教学重点
通过对反比例函数图像的分析,探究反比例函数的增减性.
教学难点
由于受小学反比例关系增减性知识的负迁移,又由于反比例函数图像分成两条分支,给研究函数的增减性带来复杂性.
教学过程
一、复习
1.反比例函数    的图象经过点(-1,2),那么这个反比例函数的解析式为 ,图象在第 象限,它的图象关于 成中心对称.
2.反比例函数    的图象与正比例函数的图象交于点A(1,m),则m=   ,反比例函数的解析式为    ;这两个图象的另一个交点坐标是   .
3.说出出函数的大致图像.
二、讲授新课
1.反比例函数图象的性质
结合复习3,让学生完成表格1-4、在此基础上总结出反比例函数的性质:
当k>0时,在图象的每个象限内,函数值y随自变量x的增大而减小;
当k<0时,在图象的每个象限内,函数值y随自变量x的增大而增大.
2.做一做
(1)用“>”或“<”填空:
①已知和是反比例函数的两对自变量与函数的对应值.若,则0    ;
②已知和是反比例函数的两对自变量与函数的对应值.若,则0    .
(2)已知(,),( ,),( ,)是反比例函数的图象上的三个点,并且,则,,的大小关系是(  )
  (A)<< (B)>> (C)>>(D)>>
(3)已知反比例函数.①当x>5时,0  y 1;
②当x≤5时,则y   1,或y<  ;(3)当y>5时,x的范围是 .
3.讲解例题
【例】 下图是浙江省境内杭甬铁路的里程示意图.设从杭州到余姚一段铁路线上的列车行驶的时间为时,平均速度为千米/时,且平均速度限定为不超过160千米/时.
(1)求关于的函数解析式和自变量t的取值范围;
(2)画出所求函数的图象;
(3)从杭州开出一列火车,在40分内(包括40分)到达余姚 可能吗?在50分内(包括50分)呢?如有可能,那么此时对列车的行驶速度有什么要求?
思路:(1),.
(2)可用列表法画出函数图象(略).
(3),可得.
小结:(1)自变量t不仅要符合反比例函数自身的式子有意义,而且要符合实际问题中的具体意义及附加条件.
(2)对于在自变量的取值范围内画函数的图像映注意图像的纯粹性.
(3)一般有;两种方法求自变量的取值范围:一是利用函数的增减性,二是利用图解法.
练习 完成课本第16页课内练习第3题
三、小结:
本节课我学到了…… 我的困惑……
四、比较正比例函数和反比例函数的性质
正比例函数 反比例函数
解析式 () ()
图像 直线 双曲线
位置 k>0,一、三象限;k<0,二、四象限 k>0,一、三象限k<0,二、四象限
增减性 k>0,y随x的增大而增大k<0,y随x的增大而减小 k>0,在每个象限y随x的增大而减小k<0,在每个象限y随x的增大而增大
五、布置作业
课本作业题1-6.
课题 反比例函数概念复习
教学目标
1.进一步认识成反比例的量的概念.
2.结合具体情境体会反比例函数的意义,理解反比例函数的概念.
3.掌握反比例函数的解析式,会求反比例函数的解析式.
教学重点和难点
重点 反比例函数的定义和会求反比例函数的解析式.
难点 目标2.
教学过程
一、知识要点:一般地,形如 ( k是常数,) 的函数叫做反比例函数.
注意:(1)常数 k 称为比例系数,k 是非零常数;
(2)解析式有三种常见的表达形式:
(A)(),(B)()(C)y=kx-1(k≠0)
二、例题讲解
1.在下列函数表达式中,x均为自变量,哪些y是x的反比例函数 每一个反比例函数相应的k值是多少
(1);(2);(3);(4);(5);(6);(8)
(9);.
2.若y=-3xa+1是反比例函数,则a= .
3.若y=(a+2)x a2 +2a-1为反比例函数关系式,则a= .
4.如果反比例函数y=的图象位于第二、四象限,那么m的范围为 .
5.下列的数表中分别给出了变量y与x之间的对应关系,其中是反比例函数关系的是( )
x 1 2 3 4
y 6 8 9 7
x 1 2 3 4
y 8 5 4 3
x 1 2 3 4
y 5 8 7 6
X 1 2 3 4
y 1 1/2 1/3 1/4
6.回答下列问题:
(1)当路程 s 一定时,时间 t 与速度 v 的函数关系;
(2)当矩形面积 S一定时,长 a 与宽 b 的函数关系;
(3)当三角形面积 S 一定时,三角形的底边 y 与高 x的函数关系;
(4)当电压U不变时,通过的电流I与线路中的电阻R的函数关系.
7.实践应用
【例1】 设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm),
⑴求h关于a的函数解析式及自变量a的取值范围;
⑵ h关于a的函数是不是反比例函数?如果是,请说出它的比例系数;
⑶求当边长a=25cm时,这条边上的高.
解略.
【例2】 设电水壶所在电路上的电压保持不变,选用电热丝的电阻为R(Ω),电水壶的功率为P(W).
(1) 已知选用电热丝的电阻为50Ω,通过电流为968w,求P关于R的函数解析式,并说明比例系数的实际意义.
(2)如果接上新电热丝的电阻大于50Ω,那么与原来的相比,电水壶的功率将发生什么变化?
解略.
【例3】(1)y是关于x的反比例函数,当x=-3时,y=0.6;求函数解析式和自变量x的取值范围.
(2)如果一个反比例函数的图象经过点(-2,5),(-5,n)求这个函数的解析式和n的值.
(3)y与x+1成反比例,当x=2时,y=-1,求函数解析式和自变量x的取值范围.
(4) 已知y与x-2成反比例,并且当x=3时,y=2.求x=1.5时y的值.
(5)如果是的反比例函数,是的反比例函数,那么是的(  )
A.反比例函数  B.正比例函数   C.一次函数   D.反比例或正比例函数
解略.
三、练习:P21 1—10
四、小结.
五、布置作业:见练习卷.
课题:1.3反比例函数的应用
教学目标
1.经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.
2.会综合运用反比例函数的解析式,函数的图像以及性质解决实际问题.
3.体验数形结合的思想.
教学重点、难点:运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题.
教学过程
一、 复习
1.什么是反比例函数?它的图像是什么?具有哪些性质?
2.小明家离学校3600米,他骑自行车的速度是x(米/分)与时间y(分)之间的关系式是
,若他每分钟骑450米,需 分钟到达学校.
二、新课讲授
【例1】 设△ABC中BC的边长为x(cm),BC 边上的高AD为y(cm),△ABC的面积为常数.已知y关于x 的函数图像过点(3,4).
(1)y关于x的函数解析式和△ABC的面积;
(2)画出函数的图像,并利用图像,求当时y 的值
思路:(1)设△ABC的面积为,则,∴,把点(3,4)代入得cm2.
(2)当时,;当时,.
由图形得.
小结:(1)根据实际问题中变量之间的数量关系建立函数解析式.
(2)根据给定的自变量的值或范围求函数的值或范围,可以应用函数的性质,也可以应用函数的图像;根据已知函数的值或范围求相应的自变量的值或范围,可以应用函数的性质和图像,也可以把问题转化为解方程或不等式.
【例2】如图,在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积和气体对气缸壁所产生的压强.
(1)请根据表中的数据求出压强p(kpa)关于体积V(mL)函数解析式。
(2)当压力表读出的压强为72 kpa时,气缸内的气体压缩到多少mL?
体积V(ml) 压强p(kpa)
100 60
90 67
80 75
70 86
60 100
分析:(1)对于表中的实验数据你将作怎样的分析、处理?
(2)能否用图像描述体积V与压强p的对应值?
(3)猜想压强p 与体积V之间的函数类别?
师生一起解答此题。并引导学生归纳此种数学建模的方法与步骤:
(1)由实验获得数据;
(2)用描点法画出图像;
(3)根据图像和数据判断或估计函数的类别;
(4)用待定系数法求出函数解析式;
(5)用实验数据验证.
指出:由于测量数据不完全准确等原因,这样求得的反比例函数的解析式可能只是近似地刻画了两个变量之间的关系.
三、巩固练习
课本第19页第1、2题.
四、布置作业
课本作业题1-5.
课题 第一章反比例函数复习
教学目标
1.通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律.
2.结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题.
3.让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力.
教学重点 反比例函数的图像和性质在实际问题中的运用.
教学难点 运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法.
教学过程
一、 知识回顾
1.什么是反比例函数?
2.你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流.
二、练一练
1.反比例函数的图象是 ,分布在第 象限,在每个象限内, y都随x的增大而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x12.函数与()在同一坐标坐标系中的图象可能是( )
3.已知反比例函数,若x1 4.如图在坐标系中,直线与双曲线 在第一象限交与点A,与x轴交于点C,AB垂直x轴,垂足为B,且S△AOB=1.
(1)求两个函数解析式;
(2)求△ABC的面积.
5.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y (m) 是面条的粗细(橫截面积)S(mm2) 的反比例函数,其图象如图所示.
(1) 写出y与s的函数关系式;
(2) 求当面条粗1.6㎜2时,面条的总长度是多少?
6.已知反比例函数的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数的图象与x轴的交点坐标.
三、小结:
1.本节复习课主要复习本章学生应知应会的概念、图像、性质、应用等内容,夯实基础提高应用.
2.充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.
第一章反比例函数测试
基础训练题
1、 选择题
1.已知反比例函数的图象经过点,则函数可确定为( )
A. B. C. D.
2. 果反比例函数的图象经过点,那么下列各点在此函数图象上的是( )
A. B. C. D.
3.如右图,某个反比例函数的图象经过点P,则它的解析式为( )
A. B.
C. D.
4.右图是三个反比例函数,,在x轴上方的图象,由此观察得到、、的大小关系为( )
A. B.
C. D.
5. 知反比例函数的图象上有两点、且,那么下列结论正确的是( )
A. B. C. D. 与之间的大小关系不能确定
6.已知反比例函数的图象如右图,则函数的图象是下图中的( )
7.已知关于x的函数和(k≠0),它们在同一坐标系内的图象大致是( )

8.如图,点A是反比例函数图象上一点,AB⊥y轴于点B,则△AOB的面积是( )
A. 1 B. 2 C. 3 D. 4
9.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例. 右图表示的是该电路中电流I与电阻R之间的图象,则用电阻R表示电流I的函数解析式为( )
A. B. C. D.
二、填空题
1.我们学习过反比例函数. 例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为(S为常数,S≠0).
请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.
实例:_________________________________________________;
函数关系式:___________________________________________.
2.右图是反比例函数的图象,那么k与0的大小关系是.
3.点在双曲线上,则k=______________.
4.眼镜的度数y(度)与镜片焦距x(米)成反比例. 已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是_____________.
5.已知反比例函数的图象经过点,则a=__________.
三、解答题
1.已知一次函数的图象与反比例函数的图象在第一象限交于点,求k,n的值.
2.已知反比例函数的图象与一次函数的图象相交于点.
(1)分别求这两个函数的解析式.
(2)试判断点关于x轴的对称点是否在一次函数的图象上.
3.反比例函数的图象经过点.
(1)求这个函数的解析式;
(2)请判断点是否在这个反比例函数的图象上,并说明理由.
4.在压力不变的情况下,某物承受的压强P(Pa)是它的受力面积S(m2)的反比例函数,其图象如右图所示.
(1)求P与S之间的函数关系式;
(2)求当S=0.5m2时物体所受的压强P.
5.如图,反比例函数与一次函数的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)求△AOB的面积.
能力提高练习
一、学科内综合题
1.如右图,△OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是_____________.
2.已知反比例函数和一次函数.
(1)若一函数和反比例函数的图象交于点,求m和k的值.
(2)当k满足什么条件时,这两个函数的图象有两个不同的交点?
(3)当时,设(2)中的两个函数图象的交点分别为A、B,试判断A、B两点分别在第几象限?∠AOB是锐角还是钝角(只要求直接写出结论)?
二、学科间综合题
1.若一个圆锥的侧面积为20,则下图中表示这个圆锥母线长l与底面半径r之间函数关系的是( )


三、实际应用题
1.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米. 设健身房的高为3米,一面旧墙壁AB的长为x米,修建健身房的总投入为y元.
(1)求y与x的函数关系式;
(2)为了合理利用大厅,要求自变量x必须满足8≤x≤12. 当投入资金为4800元时,问利用旧墙壁的总长度为多少米?
2.为了预防“非典”,某学校对教室采用药熏消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示). 现测得药物8分钟燃毕,此时室内空气中每立方米含药量为6毫克. 请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为:___________________,自变量x的取值范围是:___________;药物燃烧后y关于x的函数关系式为:_______________;
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?
3
·
P(4,32)
20
40
60
80
100
1
2
4
5
Y /m
s/

2
o
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网