专题2.8.有理数的巧算-2024-2025学年七年级上册数学同步课堂+培优题库(浙教版(2024)) (原卷版+解析版)

文档属性

名称 专题2.8.有理数的巧算-2024-2025学年七年级上册数学同步课堂+培优题库(浙教版(2024)) (原卷版+解析版)
格式 zip
文件大小 436.8KB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2024-08-28 09:37:23

文档简介

/ 让教学更有效 精品试卷 | 数学
专题2.8.有理数的巧算
在有理数的运算中,若能根据题目的特征,采用适当的运算技巧,不但能化繁为简,提高运算速度,提升运算的准确率,而且会使计算过程充满乐趣。本专题重点介绍几种有理数常用的运算技巧。
模块1:知识梳理 1
模块2:核心考点 2
考点1.凑整法 2
考点2.拆项法 3
考点3.组合法 5
考点4.裂项相消法 6
考点5.相互转化法 8
考点6.倒数法 9
考点7.错位相减法 10
考点8.利用乘法分配律进行简算 11
考点9.利用图形进行简算 15
模块3:能力培优 19
常见 有理数运算技巧方法 :
凑整法 :将和为整数的数结合计算,便于快速得出结果。
拆项法:将一个数分解成两个或几个数之和的形式,通过分解,简化计算步骤。
组合法:将同类数组合 :将 正数或 负数归类计算,简化运算过程。分母相同或易于通分的数组合 :简化计算过程,提高计算效率。 将相加得零的数结合计算 :将相加得零的数结合计算,减少计算量。
转化法: 转化将小数与分数或乘法与除法相互转化 :通过转化,简化计算过程。
倒数法: 约将互为倒数的数或有倍数关系的数约简 :通过约简,简化计算过程。
运算律法: 变运用运算律改变运算顺序 :通过改变运算顺序,简化计算步骤。 逆正难则反,逆用运算律改变次序 :通过逆用运算律,解决复杂问题。
考点1.凑整法
【解题方法】多个有理数相加时,如果既有分数,也有小数,一般将存在数量少的形式转化成数量多的形式,把能凑成整数的数结合在一起,可以使计算简便,这种方法简称凑整法。
例1.(23-24七年级·上海普陀·期中)计算:
【答案】
【分析】本题考查了有理数的加减混合运算,有理数的加法交换律和结合律,熟练掌握有理数的加减混合运算及有理数的加法的运算律是解题的关键.根据有理数加法的运算律,将能凑整的数先凑整,得到,再进一步计算,即得答案.
【详解】解:原式.

变式1.(2024秋·广西崇左·七年级校考阶段练习)计算:
(1) ; (2).
【答案】(1)0 (2)0
【分析】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.
(1)根据有理数加法法则与运算律进行计算便可.
(2)根据有理数加法法则与运算律进行计算便可.
【详解】(1)解:


(2)

变式2.(2023七年级·广东佛山·期中)计算:.
【答案】
【分析】先根据去括号法则去括号,再根据加法交换律和结合律简便计算即可.
【详解】解:




【点睛】本题考查有理数的加法运算,熟练掌握有理数加法运算法则和加法运算律是解题的关键.
考点2.拆项法
【解题方法】先把带分数拆成整数和真分数两部分,再把整数部分和真分数部分分别结合在一起利用交换律, 结合律得出答案。
例1.(2023七年级上·江苏·专题练习)阅读下面文字:对于,可以按如下方法计算:
原式

上面这种方法叫拆项法.仿照上面的方法,请你计算:
(1); (2).
【答案】(1)(2)
【分析】(1)根据示例,利用有理数中的加减简便运算即可求解.
(2)根据示例,利用有理数中的加减简便运算即可求解.
【详解】(1)解:原式

(2)原式

【点睛】本题考查了有理数中的加减简便运算,根据示例结合有理数中的加减简便运算法则进行计算是解题的关键.
变式1.(23-24七年级·河南驻马店·阶段练习)计算:
【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.
【详解】解:原式

变式2.(2024秋·山东德州·七年级校考阶段练习)计算:
(1). (2).
【答案】(1) (2)
【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.
【详解】(1)解:
(2)
【点睛】本题考查了有理数的加减混合运算,利用题干中的拆项法拆项后再利用运算律解答是解题的关键.
考点3.组合法
【解题方法】观察算式,找出算式分布规律,然后适当分组,利用结合律将相加和为整数的结合在一起简化计算。
例1.(23-24七年级·山西太原·阶段练习)计算值为( )
A.0 B.﹣1 C.2020 D.-2020
【答案】D
【分析】根据加法的结合律四个四个一组结合起来,每一组的和都等于-4,共505组,计算即可.
【详解】解:1+2-3-4+5+6-7-8+9+10-11-12+……+2017+2018-2019-2020
=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+……+(2017+2018-2019-2020)
=(-4)+(-4)+(-4)+(-4)+……+(-4)
=(-4)×505
=-2020.
故选D.
【点睛】本题考查了有理数的加减混合运算,观察出规律是解题的关键.
例2.(23-24七年级·吉林长春·期中)计算:
(1). (2).
【答案】(1)20 (2)5
【分析】先化简符号,再正数结合负数结合,最后相加.
本题主要考查了有理数的加减混合运算.熟练掌握化简符号,加法结合律,是解决问题的关键.
【详解】(1)

(2)解:

变式1.(23-24七年级·北京·期末)
【答案】0
【分析】通过观察,每四项结合在一起,每一项结果为0,然后将原式利用加法结合律进行计算.
【详解】原式=
=0,
【点睛】本题考查了加法中的巧算问题,熟练应用加法结合律是关键.
变式2.(23-24七年级·安徽阜阳·阶段练习)计算:
【答案】1012
【分析】合理分组:每两个数为一组,结果是3;一共有337组;进行简算即可.
【详解】
每两个数为一组,结果是3;
则 即一共有337组;
原式.
考点4.裂项相消法
【解题方法】根据算式特点,将各项变为两项,然后把互为相反数的两项相加,只剩下首项和末项相加得出结果。
例1.(23-24七年级·山东威海·阶段练习)计算:
(1);(2);(3).
【答案】(1)(2)(3)
【分析】(1)根据题中给出的式子找出规律,再进行计算即可得到答案;(2)根据,,得出,再进行计算即可得到答案;
(3)将式子化为,再利用题中所给的规律进行计算即可得到答案.
【详解】(1)解:,,

(2)解:,,


(3)解:

【点睛】本题考查了有理数的混合运算,理解题意,得出规律及,熟练掌握有理数的混合运算法则及顺序是解题的关键.
变式1.(23-24七年级·安徽马鞍山·期中)计算:.
【答案】
【详解】解:原式=
=
=
=.
【点睛】本题主要考查有理数的乘法运算及加减运算,熟练掌握有理数的运算是解题的关键.
变式2.(23-24七年级·广东佛山·阶段练习)计算:.
【答案】
【详解】因为,,,…,
所以原式==.
【点睛】本题考查了有理数的特殊运算,熟练掌握运算方法是解题的关键.
考点5.相互转化法
【解题方法】根据算式特点,将式子中的分数转化为小数,或小数转化为分数,统一后再进行运算。
例1.(23-24七年级·江苏盐城·开学考试)计算:
【答案】
【分析】本题考查了有理数的混合运算,熟练掌握相关运算法则是解题关键.
利用乘法分配律进行计算即可.
【详解】

变式1.(23-24七年级·浙江衢州·阶段练习)计算:;
【答案】
【分析】本题考查了有理数的运算等知识,根据有理数的运算法则进行运算即可求解.
先把除法运算化为乘法运算,再进行多个有理数乘法运算即可求解;
【详解】)解:
变式2.(23-24七年级·福建厦门·阶段练习)计算:
【答案】1000
【分析】按有理数乘法法则计算即可;
【详解】解:
变式3.(23-24七年级·河北石家庄·开学考试)计算:
(1);(2);
【答案】(1)18 (2)
【分析】根据有理数的加减乘除混合运算法则及运算顺序计算即可得到答案.
【详解】(1)解:

(2)解:

【点睛】本题考查有理数的混合运算,熟练掌握有理数加减乘除的运算法则及运算顺序是解决问题的关键.
考点6.倒数法
【解题方法】
例1.(23-24七年级·陕西汉中·期末)计算的值.
【答案】
【分析】本题考查了有理数的混合运算;
原式的倒数为,将除法变成乘法,利用乘法分配律进行计算,然后可得答案.
【详解】解:原式的倒数为,

所以.
变式1.(23-24七年级·湖北襄阳·期中)计算:.
【分析】本题考查的是有理数的混合运算,掌握混合运算的运算顺序是解本题的关键;
先计算,再求解结果的倒数即可.
【详解】解:



故=.
变式2.(23-24七年级·江苏连云港·阶段练习)计算:.
【答案】
【分析】本题考查了有理数运算的有关知识,有理数的乘除运算:没有除法分配律.
【详解】解:原式的倒数为 .
故原式.
考点7.错位相减法
例1.(23-24七年级·山东滨州·期中)计算:
【答案】
【分析】本题考查了规律性:数字的变化类、有理数的混合运算,根据错位相减法进行计算即可求解.
【详解】解:令,
则,
因此,
所以,
所以
.故答案为:.
变式1.(23-24七年级·江苏连云港·阶段练习计算:
【答案】
【分析】本题是数字类的规律题,根据扩大倍数,利用错位相减法,消掉相关值,是解题的关键.
【详解】(1)解:可令,
然后两边同乘2变成,
再让两式相减,因此有,
所以,即

变式2.(23-24七年级·广东深圳·期中)计算
(1)的值.(2).
【答案】(1);(2)
【详解】解:(1)令

②-①得:,;
(2)令

①-②:


【点睛】本题考查数字类探究问题.根据题意抽象概括出数字规律,熟练掌握运算方法是解题的关键.
考点8.利用乘法分配律进行简算
【解题方法】乘法交换律: 乘法结合律:
乘法分配律: 乘法分配律的逆用:
例1.(23-24七年级·河北石家庄·开学考试)计算:.
【答案】100
【分析】本题考查有理数的混合运算,利用乘法分配律简便计算即可.
【详解】解:

变式1.(23-24七年级·辽宁沈阳·期中)用简便方法计算
(1) (2).
【答案】(1);(2)99900.
【分析】(1)将写成,再根据乘法分配律进行计算即可;(2)将写成,再利用乘法分配律的逆运算进行计算即可求得结果.
【详解】解:(1)

(2)原式
.
【点睛】此题考查有理数的乘法分配律及其逆运算,(1)中将带分数拆分成与其相近的整数加减其它分数表示的方法,再根据乘法分配律计算很简便;(2)中要将每组乘法中的一个因式写成同一个数的形式,再利用乘法分配律的逆运算进行运算,以达到简便的目的.
变式2.(23-24七年级·江苏南京·阶段练习)简便计算:
(1);
(2).
【答案】(1);(2)
【分析】(1)利用有理数的混合运算的法则和运算律解答即可;
(2)根据先将看着一个整体,利用乘法分配律把后面乘法部分展开,再逆用乘法分配律进行计算即可.
【详解】(1)解:

(2)解:

【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.灵活运用乘法分配律进行计算.
变式3.(23-24七年级·河南开封·开学考试)怎样简便怎样算
(1); (2)
(3) (4)
【答案】(1)0(2)(3)1(4)
【分析】(1)根据将原式变形为即可得到答案;
(2)将原式先加上,再减去,根据有理数加减计算法则求解即可;
(3)根据,利用乘法的分配律将分子变形为,由此即可得到答案;
(3)根据先将括号内的式子变形为,再由进行求解即可.
【详解】(1)解:

(2)解:

(3)解:

(4)解:

【点睛】本题主要考查了有理数的简便计算,熟知有理数的相关计算法则和运算律是解题的关键.
考点9.利用图形进行简算
例1.(23-24七年级·全国·期中)看图填空:如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成面积为的长方形,如此进行下去……
(1)试利用图形揭示的规律计算:=_______.
并使用代数方法证明你的结论.
(2)请给利用图(2),再设计一个能求:的值的几何图形.
【答案】(1) ,证明见解析(2)见解析
【分析】(1)①根据图形可知用正方形面积减去最后一个小长方形面积即可求解;②设,再算出,两式相减即可证明;
(2)用正方形的对角线将面积为1正方形分成两个面积为的三角形,然后再作三角形的高,将其面积平分,如此进行下去即可.
【详解】(1)解:①由题意可知当最后一个小长方形的面积为时 ,
的值为正方形面积减去最后一个小长方形面积,即: ,

②设 ,

,即,

(2)如图所示,将面积为1的正方形等分成两个面积为的三角形,接着把面积为的三角形等分成两个面积为的三角形,再把面积为的三角形等分成面积为的三角形,如此进行下去,
则的值即为正方形面积减去最后一个小三角形面积:
【点睛】本题考查了图形的规律,数字的规律,图形的面积,有理数的乘方;分析、总结、归纳的能力是解题的关键.
变式1.(23-24七年级·山东青岛·期中)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依次类推.

(1)图中阴影部分的面积为  ;(2)受此启发,得到=  ;
(3)联系拓广,得到=  (用含n的式子表示);
(4)迁移应用:得到=  (直接写出答案即可).
【答案】(1)(2)(3)(4)
【分析】本题考查图形变化的规律,数形结合思想的巧妙运用是解题的关键;
(1)根据图中三角形面积之间的关系即可解决问题;(2)利用数形结合的思想即可解决问题;
(3)利用数形结合的思想即可解决问题;(4)根据(3)中的结论即可解决问题;
【详解】(1)由题知,正方形每次被分割的部分是前一部分面积的一半,
所以图中阴影部分的面积与部分⑥的面积相等.
又因为部分①的面积为:,部分②的面积为:,部分③的面积为:,…,
依次类图,部分n的面积为.当时,.
所以阴影部分的面积为.故答案为:.
(2)由(1)知,,所以.故答案为:.
(3)根据(2)中的发现可知,.故答案为:.
(4)由题知,原式.
令①,则②,
得,,即,所以原式.故答案为:.
变式2.(23-24七年级·湖南永州·期中)【阅读】求值.
【运用】仿照此法计算:
解:设①
将等式①的两边同时乘以2得:②
由②①得:,
即:,
(1);
(2)【延伸】如图,将边长为1的正方形分成个完全一样的小正方形,得到左上角一个小正方形为,选取右下角的小正方形进行第二次操作,又得到左上角更小的正方形,依次操作次,依次得到小正方形.

完成下列问题:①小正方形的面积等于 ;②求正方形的面积和.
【答案】(1);(2)①;②.
【分析】(1)根据例题,原式乘以5,然后两式相减即可求解.
(2)①根据有理数乘方的意义,表示出,找到规律即可求解.
②根据(1)的方法,进行计算即可求解.
【详解】(1)设
,得:
,得:则
(2)①∵,……,
∴,故答案为:;
② ①,
得:②,
得:,∴,
即.
【点睛】本题考查了有理数乘方的应用,理解例题的解法是解题的关键.
有理数的混合运算(30题)
1.(23-24七年级·广东广州·阶段练习)计算:

【答案】4
【详解】

【点睛】此题考查有理数加减混合运算,绝对值的化简,正确掌握有理数加减混合运算法则是解题的关键.
2.(2023七年级·广东佛山·期中)计算:
【答案】
【分析】本题主要考查了有理数的加减法,掌握将减法统一为加法,运用有理数的加法交换律和结合律是解题的关键.
【详解】解:

3.(2024秋·广西崇左·七年级校考阶段练习)计算:

【答案】5
【分析】先根据去括号法则去括号,再根据加法交换律和结合律简便计算即可;
【详解】解:

【点睛】本题考查有理数的加法运算,掌握各运算法则是解题关键.
4.(23-24七年级·辽宁鞍山·阶段练习)计算:.
【答案】
【分析】根据题目中材料,将原式整理为,然后求解即可.
【详解】解:原式

【点睛】本题主要考查了有理数加减混合运算,理解材料中简便运算方法是解题关键.
5.(23-24七年级·江苏苏州·阶段练习)计算:.
【答案】
【分析】本题考查有理数的混合运算,解答本题的关键是明确题意,会用裂项抵消法解答问题.将题目中的式子变形,然后裂项抵消即可解答本题.
【详解】解:

6.(23-24七年级·广东东莞·阶段练习)计算:.
【答案】
【分析】本题考查了有理数的混合运算,倒数的定义
先计算原式前半部分的结果,然后根据倒数的定义求出后半部分的结果,即可求出原式的值.
【详解】(1)解:前部分:

后部分:
原式的倒数,
故,原式.
7.(23-24七年级·贵州铜仁·阶段练习)计算的值.
【答案】
【分析】令,然后两边同时乘以3,接下来利用错位相减的方法计算即可.
【详解】令


∴ 故答案为:.
【点睛】本题考查了有理数的混合运算问题,掌握运算技巧以及有理数混合运算法则是解题的关键.
8.(23-24七年级上·山东德州·阶段练习)计算题
(1) (2)
(3) (4)
【答案】(1)13(2)(3)16(4)
【分析】(1)运用有理数的加法、减法法则处理;
(2)运用有理数的加法处理,可运用加法结合律简化运算;
(3)可运算加法结合律、有理数加法、减法运算法则处理;
(4)小数变形为分数,运用加法结合律、加法、减法运算法则处理.
【详解】(1)
(2)
(3)
(4)
【点睛】本题考查有理数的加减法,加法运算律;掌握有理数的运算法则是解题的关键.
9.(24-25七年级上·山东·随堂练习)阅读下面的解题方法.
计算:.
解:原式
上述解题方法叫做拆项法,按此方法计算:

【答案】11
【分析】本题考查了有理数的加法,拆项法是解题关键.根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.
【详解】解:原式
10.(23-24七年级上·甘肃平凉·期中)用适当的方法计第,并写清解题过程.
(1)
(2)
【答案】(1)(2)
【分析】(1)根据观察可得,即有25个相乘,再求解即可;
(2)先把整数部分相加,再把分数部分相加即可.
【详解】(1)解:原式

(2)解:原式

【点睛】本题考查有理数的混合运算,根据式子的特点找出计算的简便方法是解题的关键.
11.(24-25七年级上·浙江·假期作业)计算.
(1)
(2)
【答案】(1)(2)1012
【分析】(1)根据带分数的意义,可将算式变为,然后去掉括号,将算式变为,然后根据带符号搬家和括号的应用,将算式变为,再计算括号里面的结果,接着根据乘法的意义,将算式变为进行简算即可.
(2)合理分组:每两个数为一组,结果是3;一共有337组;进行简算即可.
【详解】(1)







=;
(2)
每两个数为一组,结果是3;

即一共有337组;
原式.
12.(23-24七年级上·云南昭通·阶段练习)计算:
(1);(2).
【答案】(1)5(2)
【分析】此题考查了有理数的混合运算,熟练掌握有理数的运算法则和运算顺序是解题的关键.
(1)把除法转为乘法,再进行多个有理数相乘即可;
(2)先计算乘方,再把除法转化为乘法再进行多个有理数相乘即可.
【详解】(1)
(2)
13.(23-24七年级上·湖南衡阳·开学考试)计算下列各题,能简算的要简算:
(1);(2);(3);
(4).
【答案】(1)(2)(3)(4)
【分析】本题主要考查了有理数的四则运算,准确运用运算律计算是解题关键.
(1) 仔细观察本题,通过调整,提出公因子,即可简算结果;
(2)提出公因子,即可简算结果;
(3)先去括号、假分数转成真分数计算,再观察题目,提出公因子,即可简算结果;
(4)设 ,,即可简化运算过程,得出结果.
【详解】(1)解:

(2)
=2010000.
(3)

(4)设 ,,

14.(23-24七年级上·辽宁沈阳·阶段练习)计算: .
【答案】/
【分析】本题考查有理数的加法运算,掌握裂项相加是解题的关键.
【详解】解:
,故答案为:.
15.(23-24七年级上·广东佛山·阶段练习)先阅读并填空,再解答问题.
我们知道,
(1)仿写:__________,__________,__________.
(2)直接写出结果:__________.
利用上述式子中的规律计算:(3);
(4).
【答案】(1),,;(2);(3);(4).
【分析】()根据题中给出的等式即可求解;()根据题中给出的等式即可求解;
()根据题中给出的等式即可求解;()根据题中给出的等式,然后提出,即可求解.
【详解】(1)根据,,,
∴,,,
故答案为:,,;
(2)原式,
,,故答案为:;
(3)原式,



(4)原式,




【点睛】此题考查了数字的变化规律,有理数的混合运算,列代数式,寻找数字变化的规律,准确发现规律并能熟练应用是解题的关键..
16.(23-24七年级上·江苏连云港·阶段练习)阅读下列材料,计算:.
解法一:原式 .
解法二:原式 .
解法三:原式的倒数为 .
故原式.
上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的.
请你选择合适的解法解答下列问题:
计算:(1);(2).
【答案】一;(1);(2)
【分析】本题考查了有理数运算的有关知识,含乘方的有理数混合运算,有理数的乘除运算:
没有除法分配律,故解法一错误;
(1)先计算乘方和括号里面的内容,再将除法化成乘法进行计算即可;
(2)先计算括号里的内容,再将除法化成乘法进行计算即可.
【详解】解:没有除法分配律,故解法一错误,
故答案为:一;
(1)原式

(2)原式

17.(23-24七年级上·江苏连云港·阶段练习)为了求的值,可令,则,因此,,所以即,依照以上推理计算:的值.
【答案】
【分析】本题考查了有理数的混合运算,利用类比的数学思想解决问题是解题关键.仿照题干,令,进而得到,然后作差,整理即可得到所求式子的值.
【详解】解:令,则,
,,
即的值为.
18.(23-24七年级上·山西临汾·期中)阅读与思考
阅读下列材料,完成后面的任务,
高斯计算的故事
高斯,德国著名数学家,几何学家,毕业于布伦瑞克工业大学,1796年,高斯证明了可以利用尺规作正十七边形,1807年高斯成为哥廷根大学教授和哥廷根天文台台长,1840年高斯与韦伯一同画出世界上第一张地球磁场图.高斯(8岁)在一次课堂上回答过这样一个问题:计算,高斯的解答如下:原式.我们把这样的求和称为高斯求和,把这样的公式称为高斯公式,即,用语言叙述为和.
任务:(1)材料中运用了我们学过的运算律是________.
A.加法交换律 B.加法结合律 C.加法交换律和结合律 D.乘法分配律
(2)计算:.
【答案】(1)C;(2)10000.
【分析】(1)根据材料中的计算过程进行回答即可;
(2)进行适当变形后再运用高斯公式求解即可.
【详解】(1)材料中运用了我们学过的运算律是加法交换律和结合律,故选:C;
(2).

【点睛】本题考查了有理数的运算律及有理数的混合运算,解决本题的关键是理解材料内容并能运用解决问题.
19.(23-24七年级上·山东青岛·阶段练习)在学习了有理数的加减法之后,老师讲解了例题的计算思路为:将两个加数组合在一起作为一组;其和为1,共有1009组,所以结果为.根据这个思路学生改编了下列几题:
(1)计算:
①__________;
②__________.
(2)蚂蚁在数轴的原点O处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位…按照这个规律,第2024次爬行后蚂蚁在数轴什么位置?
【答案】(1)①;②;(2)第2024次爬行后蚂蚁在数轴上的.
【分析】本题主要考查数字的变化规律,解题的关键是根据例题思路将加数合理分组,从中找到和为固定常数的规律.(1)①由每两个数为一组、其和为,共1011组,据此可得;②由每两个数为一组、其和为,共506组,据此求解可得;
(2)根据题意列出算式:,每四个数为一组、其和为,共506组,据此求解可得.
【详解】(1)解:(1)①;
②;
故答案为:、;
(2)根据题意知第2024次爬行后蚂蚁在数轴上的

20.(23-24七年级·山东青岛·期中)曹冲称象是我国历史上著名的故事,大家都说曹冲聪明.他到底聪明在何处呢?我们都知道,曹冲称得是石块而不是大象,并且确信,石块的质量就是大象的体重.曹冲的聪明就在于,他用化归思想将问题转变了;借助于船这种工具,将大象的体重转变为一块块石块的重量.转变就是化归的实质.化归不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式.从字面上看,化归就是转化和归结的意思.例如:我们在七年级数学上册第二章中引入“相反数”这个概念后,正负数的减法就化归为已经解决的正负数的加法了;而引入“倒数”这个概念后,正负数的除法就化归为已经解决的正负数的乘法了.
下面我们再通过具体实例体会一下化归思想的运用:
数学问题,计算(其中是正整数,且,).
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续二等分,……;
……
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是.
根据第n次分割图可得等式:.
探究二:计算.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续三等分,……,
……
第n次分别,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,最后空白部分的面积是.
根据第n次分制图可得等式:,
两边同除2,得,
探究三:计算.
(仿照上述方法,在图①中只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题.计算.
(在图②中只画出第n次分割图,在图上标注阴影部分面积,并完成以下填空).
(1)根据第n次分割图可得等式:___________.
(2)所以,___________.
(3)拓广应用:计算___________.
【答案】探究三: 图见见解析;
解决问题:图见解析;(1);(2);(3)
【分析】探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;
解决问题:(1)根据第n次分割图得出等式
(2)按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以即可得解;
(3)拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.
【详解】探究三:第1次分割,把正方形的面积四等分,
其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续四等分,
阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续四等分,
…,
第次分割,把上次分割图中空白部分的面积最后四等分,
所有阴影部分的面积之和为:,
最后的空白部分的面积是,
根据第次分割图可得等式: ,
两边同除以3,得 ;
解决问题:
(1)
故答案为:
(2) ,
故答案为:;
(3)拓广应用:

故答案为:.
【点睛】本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)/ 让教学更有效 精品试卷 | 数学
专题2.8.有理数的巧算
在有理数的运算中,若能根据题目的特征,采用适当的运算技巧,不但能化繁为简,提高运算速度,提升运算的准确率,而且会使计算过程充满乐趣。本专题重点介绍几种有理数常用的运算技巧。
模块1:知识梳理 1
模块2:核心考点 2
考点1.凑整法 2
考点2.拆项法 3
考点3.组合法 5
考点4.裂项相消法 6
考点5.相互转化法 8
考点6.倒数法 9
考点7.错位相减法 10
考点8.利用乘法分配律进行简算 11
考点9.利用图形进行简算 15
模块3:能力培优 19
常见 有理数运算技巧方法 :
凑整法 :将和为整数的数结合计算,便于快速得出结果。
拆项法:将一个数分解成两个或几个数之和的形式,通过分解,简化计算步骤。
组合法:将同类数组合 :将 正数或 负数归类计算,简化运算过程。分母相同或易于通分的数组合 :简化计算过程,提高计算效率。 将相加得零的数结合计算 :将相加得零的数结合计算,减少计算量。
转化法: 转化将小数与分数或乘法与除法相互转化 :通过转化,简化计算过程。
倒数法: 约将互为倒数的数或有倍数关系的数约简 :通过约简,简化计算过程。
运算律法: 变运用运算律改变运算顺序 :通过改变运算顺序,简化计算步骤。 逆正难则反,逆用运算律改变次序 :通过逆用运算律,解决复杂问题。
考点1.凑整法
【解题方法】多个有理数相加时,如果既有分数,也有小数,一般将存在数量少的形式转化成数量多的形式,把能凑成整数的数结合在一起,可以使计算简便,这种方法简称凑整法。
例1.(23-24七年级·上海普陀·期中)计算:
变式1.(2024秋·广西崇左·七年级校考阶段练习)计算:
(1) ; (2).
变式2.(2023七年级·广东佛山·期中)计算:.
考点2.拆项法
【解题方法】先把带分数拆成整数和真分数两部分,再把整数部分和真分数部分分别结合在一起利用交换律, 结合律得出答案。
例1.(2023七年级上·江苏·专题练习)阅读下面文字:对于,可以按如下方法计算:
原式

上面这种方法叫拆项法.仿照上面的方法,请你计算:
(1); (2).
变式1.(23-24七年级·河南驻马店·阶段练习)计算:
变式2.(2024秋·山东德州·七年级校考阶段练习)计算:
(1). (2).
考点3.组合法
【解题方法】观察算式,找出算式分布规律,然后适当分组,利用结合律将相加和为整数的结合在一起简化计算。
例1.(23-24七年级·山西太原·阶段练习)计算值为( )
A.0 B.﹣1 C.2020 D.-2020
例2.(23-24七年级·吉林长春·期中)计算:
(1). (2).
变式1.(23-24七年级·北京·期末)
变式2.(23-24七年级·安徽阜阳·阶段练习)计算:
考点4.裂项相消法
【解题方法】根据算式特点,将各项变为两项,然后把互为相反数的两项相加,只剩下首项和末项相加得出结果。
例1.(23-24七年级·山东威海·阶段练习)计算:
(1);(2);(3).
变式1.(23-24七年级·安徽马鞍山·期中)计算:.
变式2.(23-24七年级·广东佛山·阶段练习)计算:.
考点5.相互转化法
【解题方法】根据算式特点,将式子中的分数转化为小数,或小数转化为分数,统一后再进行运算。
例1.(23-24七年级·江苏盐城·开学考试)计算:
变式1.(23-24七年级·浙江衢州·阶段练习)计算:;
变式2.(23-24七年级·福建厦门·阶段练习)计算:
变式3.(23-24七年级·河北石家庄·开学考试)计算:
(1);(2);
考点6.倒数法
例1.(23-24七年级·陕西汉中·期末)计算的值.
变式1.(23-24七年级·湖北襄阳·期中)计算:.
变式2.(23-24七年级·江苏连云港·阶段练习)计算:.
考点7.错位相减法
例1.(23-24七年级·山东滨州·期中)计算:
变式1.(23-24七年级·江苏连云港·阶段练习计算:
变式2.(23-24七年级·广东深圳·期中)计算
(1)的值.(2).
考点8.利用乘法分配律进行简算
【解题方法】乘法交换律: 乘法结合律:
乘法分配律: 乘法分配律的逆用:
例1.(23-24七年级·河北石家庄·开学考试)计算:.
变式1.(23-24七年级·辽宁沈阳·期中)用简便方法计算
(1) (2).
变式2.(23-24七年级·江苏南京·阶段练习)简便计算:
(1);
(2).
变式3.(23-24七年级·河南开封·开学考试)怎样简便怎样算
(1); (2)
(3) (4)
考点9.利用图形进行简算
例1.(23-24七年级·全国·期中)看图填空:如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成面积为的长方形,如此进行下去……
(1)试利用图形揭示的规律计算:=_______.
并使用代数方法证明你的结论.
(2)请给利用图(2),再设计一个能求:的值的几何图形.
变式1.(23-24七年级·山东青岛·期中)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依次类推.

(1)图中阴影部分的面积为  ;(2)受此启发,得到=  ;
(3)联系拓广,得到=  (用含n的式子表示);
(4)迁移应用:得到=  (直接写出答案即可).
变式2.(23-24七年级·湖南永州·期中)【阅读】求值.
【运用】仿照此法计算:
解:设①
将等式①的两边同时乘以2得:②
由②①得:,
即:,
(1);
(2)【延伸】如图,将边长为1的正方形分成个完全一样的小正方形,得到左上角一个小正方形为,选取右下角的小正方形进行第二次操作,又得到左上角更小的正方形,依次操作次,依次得到小正方形.

完成下列问题:①小正方形的面积等于 ;②求正方形的面积和.
有理数的混合运算(30题)
1.(23-24七年级·广东广州·阶段练习)计算:

2.(2023七年级·广东佛山·期中)计算:
3.(2024秋·广西崇左·七年级校考阶段练习)计算:;
4.(23-24七年级·辽宁鞍山·阶段练习)计算:.
5.(23-24七年级·江苏苏州·阶段练习)计算:.
6.(23-24七年级·广东东莞·阶段练习)计算:.
7.(23-24七年级·贵州铜仁·阶段练习)计算的值.
8.(23-24七年级上·山东德州·阶段练习)计算题
(1) (2)
(3) (4)
9.(24-25七年级上·山东·随堂练习)阅读下面的解题方法.
计算:.
解:原式
上述解题方法叫做拆项法,按此方法计算:

10.(23-24七年级上·甘肃平凉·期中)用适当的方法计第,并写清解题过程.
(1) (2)
11.(24-25七年级上·浙江·假期作业)计算.
(1)
(2)
12.(23-24七年级上·云南昭通·阶段练习)计算:
(1);(2).
13.(23-24七年级上·湖南衡阳·开学考试)计算下列各题,能简算的要简算:
(1);(2);(3);
(4).
14.(23-24七年级上·辽宁沈阳·阶段练习)计算: .
15.(23-24七年级上·广东佛山·阶段练习)先阅读并填空,再解答问题.
我们知道,
(1)仿写:__________,__________,__________.
(2)直接写出结果:__________.
利用上述式子中的规律计算:(3);
(4).
16.(23-24七年级上·江苏连云港·阶段练习)阅读下列材料,计算:.
解法一:原式 .
解法二:原式 .
解法三:原式的倒数为 .
故原式.
上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的.
请你选择合适的解法解答下列问题:
计算:(1);(2).
17.(23-24七年级上·江苏连云港·阶段练习)为了求的值,可令,则,因此,,所以即,依照以上推理计算:的值.
18.(23-24七年级上·山西临汾·期中)阅读与思考
阅读下列材料,完成后面的任务,
高斯计算的故事
高斯,德国著名数学家,几何学家,毕业于布伦瑞克工业大学,1796年,高斯证明了可以利用尺规作正十七边形,1807年高斯成为哥廷根大学教授和哥廷根天文台台长,1840年高斯与韦伯一同画出世界上第一张地球磁场图.高斯(8岁)在一次课堂上回答过这样一个问题:计算,高斯的解答如下:原式.我们把这样的求和称为高斯求和,把这样的公式称为高斯公式,即,用语言叙述为和.
任务:(1)材料中运用了我们学过的运算律是________.
A.加法交换律 B.加法结合律 C.加法交换律和结合律 D.乘法分配律
(2)计算:.
19.(23-24七年级上·山东青岛·阶段练习)在学习了有理数的加减法之后,老师讲解了例题的计算思路为:将两个加数组合在一起作为一组;其和为1,共有1009组,所以结果为.根据这个思路学生改编了下列几题:
(1)计算:
①__________;
②__________.
(2)蚂蚁在数轴的原点O处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位…按照这个规律,第2024次爬行后蚂蚁在数轴什么位置?
20.(23-24七年级·山东青岛·期中)曹冲称象是我国历史上著名的故事,大家都说曹冲聪明.他到底聪明在何处呢?我们都知道,曹冲称得是石块而不是大象,并且确信,石块的质量就是大象的体重.曹冲的聪明就在于,他用化归思想将问题转变了;借助于船这种工具,将大象的体重转变为一块块石块的重量.转变就是化归的实质.化归不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式.从字面上看,化归就是转化和归结的意思.例如:我们在七年级数学上册第二章中引入“相反数”这个概念后,正负数的减法就化归为已经解决的正负数的加法了;而引入“倒数”这个概念后,正负数的除法就化归为已经解决的正负数的乘法了.
下面我们再通过具体实例体会一下化归思想的运用:
数学问题,计算(其中是正整数,且,).
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续二等分,……;
……
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为,最后空白部分的面积是.
根据第n次分割图可得等式:.
探究二:计算.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续三等分,……,
……
第n次分别,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为,最后空白部分的面积是.
根据第n次分制图可得等式:,
两边同除2,得,
探究三:计算.
(仿照上述方法,在图①中只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题.计算.
(在图②中只画出第n次分割图,在图上标注阴影部分面积,并完成以下填空).
(1)根据第n次分割图可得等式:___________.
(2)所以,___________.
(3)拓广应用:计算___________.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)