首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
浙教版(2024)
八年级上册
第3章 一元一次不等式
3.1 认识不等式
浙教版八年级上册 3.1 认识不等式 课件(共14张PPT)
文档属性
名称
浙教版八年级上册 3.1 认识不等式 课件(共14张PPT)
格式
pptx
文件大小
1.2MB
资源类型
教案
版本资源
浙教版
科目
数学
更新时间
2024-09-02 10:00:15
点击下载
图片预览
1
2
3
4
5
6
7
文档简介
(共14张PPT)
3.1认识不等式
浙教版初中数学八年级上册
再探梅花洲
23≤t≤31
(2)小范同学身高为b米,恰好可以免费. 那么怎么表示b与1.2之间的关系?
(3)小吴同学身高为c米,不免费. 那么怎么表示c与1.2之间的关系?
b<1.2
c≥1.2
2.景区门票
适用人群:
1.优惠政策:限制为身高…
2.免费:身高1.2米(不含)以下
(1)梅花洲门票儿童票a已售2000+,那么怎么表示a与2000之间的关系?
a>2000
再探梅花洲
3.畅游景区
新开通一条游船线,据悉新的摇橹船每艘能坐x人,与原来每艘能坐人数y,不相等. 怎么表示x与y之间的关系?
x≠y
b<1.2
a>2000
23≤t≤31
c≥1.2
快问快答:下列数学表达式是否为不等式?
概念形成
≠
<
>
≥
≤
——不等号
等式:用等号连接而成的数学式子.
是
是
是
是
不是
不是
x≠y
b<1.2
a>2000
23≤t≤31
c≥1.2
——不等式
不等式:用不等号连接而成的数学式子.
② 3x+5>0
③ x – 6
④ 1<2
⑤ x = -2
⑥ y+2≥x
① 9x ≠ 5
例1 根据下列数量关系列出不等式:
(2) y的2倍与6的和比1小;
(3) x2减去10不大于10;
(4) 设a,b,c为一个三角形的三条边长,两边之和大于第三边.
(1) a是正数;
a>0
2y+6<1
x2-10≤10
a+b>c a+c>b b+c>a
例题讲解
抓住关键词
选准不等号
文字语言
符号语言
关 键 词 第一类:明显的不等关系 第二类:隐含的不等关系
不 等 号
大于
比...大
超过
>
小于
比...小
低于
<
不大于
不超过
至多
≤
不小于
不低于
至少
≥
正数
负数
非负数
非正数
>0
<0
≥0
≤0
归纳
根据下列数量关系列出不等式:
(1)x的4倍小于3;
(3)y减去1不大于2;
(2)x的2倍与1的和大于x;
(4)a的一半不小于-7;
(5)x是非负数.
活学活用
1.抓住关键词
2.选准不等号
?
思考:
(1)已知x1=1,x2=2,请在数轴上表示出x1,x2的位置;
(2)x<1表示怎样的数的全体?
怎样在数轴上表示它们?
(3)x≥-1如何在数轴上表示?
-1≤x<1呢?
新知再探
方法:
1. 找界点
2.分空实
文字语言
符号语言
图形语言
数形结合
转化
3.定方向
无等号---_____心
有等号---_____心
小于向_____
大于向_____
1
2
0
3
4
-1
-2
-3
x1
x2
x≤1呢?
空
实
左
右
-2<x≤3呢?
巩固练习
1. 在数轴上表示下列不等式:
(1)x < 4 (2)x≥ -3
(3)-2≤x<2 (4)1
2. 看图说出不等式:
满足不等式的最大整数的值?
满足不等式的所有非负整数的值有几个?
满足不等式的最小整数的值?
新知再探
怎样在数轴上表示下列不等式
(1)x > a
(2)x≤a
(3)b≤x
a
说明:为了表示a为任意值,这样的数轴中不标注原点和单位长度.
从特殊到一般
注意:当a为具体的值时,必须画出原点.
学以致用
例2 梅花洲附近有一座小水电站,当水库水位在12~20m(包括12m, 20m)时,发电机能正常工作. 设水库水位为 x(m).
(1)用不等式表示发电机正常工作水位范围,并表示在数轴上;
解(1)正常工作范围 12≤x≤20
0
2
4
6
8
10
12
14
16
18
20
22
x4
x2
x1
x3
(2)当水位在下列位置时,发电机能正常工作吗?
①x1=8;②x2=10;③x3=15;④x4=19. 用不等式和数轴给出解释.
(2)显然, x3,x4满足不等式12≤x≤20 ,而x1, x2不满足,
当水位在15m,19m时,发电机能正常发电,
当水位在8m,10m时,发电机不能正常发电。
不等关系
不等式
相等关系
类比
不等式的性质
解一元一次不等式(组)
一元一次不等式(组)
实际问题
等式
会认
会列
会画
转化
数形
结合
课堂小结
请谈谈你的收获~
1.实数a,b在数轴上的位置如图所示,选择适当的不等号填空。
>
>
<
<
<
拓展提升
2.是非填空题
(1) a>-a ( )
(2) -x2< 0 ( )
(3)满足 x ≥ -2.7 的最小整数是-3 ( )
注意分类性
注意严密性
注意数形结合
×
×
当a>0时,
√
当x≠ 0时,
√
拓展提升
点击下载
同课章节目录
第1章 三角形的初步知识
1.1 认识三角形
1.2 定义与命题
1.3 证明
1.4 全等三角形
1.5 三角形全等的判定
1.6 尺规作图
第2章 特殊三角形
2.1 图形的轴对称
2.2 等腰三角形
2.3 等腰三角形的性质定理
2.4 等腰三角形的判定定理
2.5 逆命题和逆定理
2.6 直角三角形
2.7 探索勾股定理
2.8 直角三角形全等的判定
第3章 一元一次不等式
3.1 认识不等式
3.2 不等式的基本性质
3.3 一元一次不等式
3.4 一元一次不等式组
第4章 图形与坐标
4.1 探索确定位置的方法
4.2 平面直角坐标系
4.3 坐标平面内图形的轴对称和平移
第5章 一次函数
5.1 常量与变量
5.2 函数
5.3 一次函数
5.4 一次函数的图象
5.5 一次函数的简单应用
点击下载
VIP下载