(共22张PPT)
第3章 圆的基本性质
3.1 圆
人民币
美圆
英镑
硬
币
圆
圆
圆的画法
请在白纸上画一个半径为2cm的圆.
若要在平坦的操场上画一个半径为3m的圆,你有什么办法
线段OP绕它固定的一个端点O旋转一周,另一端点P所经过的封闭曲线叫做圆。
定点O叫做圆心。
线段OP叫做圆的半径。
表示:
以O为圆心的圆,记做“⊙O”,
读做“圆O”。
在同一平面内,
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧.
直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).
连结圆上任意两点间的线段叫做弦(如弦AB).
●O
经过圆心的弦叫做直径(如直径AC).
AB
⌒
以A,B两点为端点的弧.记作 ,读作“弧AB”.
AB
⌒
小于半圆的弧叫做劣弧,如记作 (用两个字母).
⌒
ACB
大于半圆的弧叫做优弧,如记作
(用三个字母).
A
B
C
⌒
D
弦与弧
1、请写出图中所有的弦;
2、请任选一条弦,写出这条弦所对的弧;
A
B
C
O
D
O
A
B
C
⊙O的半径为r =3m。若A,B,C三位同学分别站在如图所示的位置。
O
如图,设⊙O的半径为r,点到圆心的距离为d。
d=r
若点A在圆上,则:
若点C在圆外,则:
d>r
若点B在圆内,则:
d<r
A
B
C
点与圆的位置关系
点与圆的位置关系
设r是圆的半径,d是在同一平面内点到圆心的距离,
那么:
点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系可以确定该点与圆的位置关系。
若点在圆内
d若点在圆上
d=r
若点在圆外
d>r
数形结合
已知⊙O的面积为25π。
(1)若PO=5.5,则点P在 ;
(2)若PO=4,则点P在 ;
(3)若PO= ,则点P在圆上。
新知应用
圆外
圆内
5
例1 如图所示,在A地正北80m的B处有一幢民房,正西100m的C处有一变电设施,在BC的中点D处是一古建筑。
因施工需要,必须在A处进行一次爆破。为使民房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?
在直角三角形ABC中,∠C=Rt∠,AC=3cm,AB=5cm。若以点C为圆心,画一个半径为3cm的圆,试判断点A,点B和⊙C的相互位置关系。
课内练习:
C
A
B
合作学习
请将自己所画的圆与同伴所画的圆进行比较, 它们是否能够完全重合?并思考什么情况下两个圆能够完全重合?
O1
r
O2
r
半径相等的两个圆叫做等圆。
请再作一个圆与已知圆是等圆,并使其中一个圆通过另一个圆的圆心。
知识的升华
实际应用
如图,在A岛附近,半径约250km的范围内是一暗礁区,往北300km有一灯塔B,往西400km有一灯塔C。现有一渔船沿CB航行,问渔船会进入暗礁区吗?
D
典型例题
例1、如图,已知矩形ABCD
的边AB=3厘米,AD=4厘米。
(1)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
(2)若以A点为圆心作圆A,使B、C、D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是什么?
练 习
3、一个点到已知圆上的点的最大距离是8,最小距离是2,则圆的半径是____
2、如图,⊿ABC中,∠C=90°,
BC=3,AC=6,CD为中线,
以C为圆心,以 为半径作圆,
则点A、B、D与圆C的位置关系如何?
1、已知圆P的半径为3,点Q在圆P外,点R在圆P上,点H在圆P内,则PQ___3,PR____3,PH_____3.
如图,一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
用一用
5
三、巩固新知 应用新知
5m
o
4m
5m
o
4m
正确答案
如图,一根6m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
想一想
6
三、巩固新知 应用新知
想一想
一个8×10米的长方形草地,现要安装自动喷水装置,这种装置喷水的半径为5米,你准备安装几个 怎样安装 请说明理由.
三、巩固新知 应用新知
课堂练习:
上
内部
外部
上
点A在⊙O内部
点A在⊙O上
点A在⊙O外部
2已知⊙O的半径是5cm,A为线段OP的中点,
当OP满足下列条件时,分别指出点A与⊙O的位置关系:
当OP= 6cm时, ;
当OP=10cm时, ;
当OP=14cm时, 。
1、正方形ABCD的边长为3cm,以A为圆心,3cm长为半径作⊙A,则点A在⊙A ,点B在⊙A ,点C在⊙A ,点D在⊙A 。