中小学教育资源及组卷应用平台
浙教版2024-2025学年七年级上数学第2章有理数的运算 培优测试卷4
解析版
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.计算 的结果是( )
A.6 B.3 C.0 D.-6
【答案】A
【解析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6.
故答案为:A.
2.下列说法正确的是 ( )
A.2的倒数是-2 B.3的相反数是
C.绝对值最小的数是1 D.0的相反数是0
【答案】D
【解析】A、2的倒数 故A选项错误;
B、3的相反数是,故B选项错误;
C、绝对值最小的数是0,故C选项错误;
D、0的相反数是0,故D选项正确.
故答案为:D.
3.下列各组数中,相等的一组是( )
A.(﹣2)3与﹣23 B.(﹣2)2与﹣22
C.(﹣3×2)3与3×(﹣2)3 D.﹣32与(﹣3)+(﹣3)
【答案】A
【解析】A.(-2)3=-8,-23=-8,(-2)3和-23相等,A符合题意;
B.(-2)2=4,-22=-4,(-2)2和-22不相等,B不符合题意;
C.(﹣3×2)3=-216,3×(﹣2)3=-24,所以,(﹣3×2)3与3×(﹣2)3不相等,C不符合题意;
D.﹣32=-9,(﹣3)+(﹣3)=-6,所以,﹣32与(﹣3)+(﹣3)不相等,D不符合题意;
故答案为:A.
4.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )
A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109
【答案】A
【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.194亿=19400000000,用科学记数法表示为:1.94×1010.
故选:A.
5.下列说法正确的是( )
A.近似数0.010精确到0.01.
B.近似数43.0精确到个位
C.近似数2.8与2.80表示的意义相同
D.近似数4.3万精确到千位
【答案】D
【解析】A、 近似数0.010精确到0.001,故A选项错误;
B、近似数43.0精确到十分位 ,故B选项错误;
C、 近似数2.8与2.80精准度不同,其表示的意义也不相同,故C选项错误;
D、近似数4.3万精确到千位 ,故D选项正确;
故答案为:D.
6.已知a为有理数,定义运算符号“※”:当a>b时,a※b=2a;当aA.-1 B.5 C.-6 D.10
【答案】A
【解析】由题意得,
3※2-(- 3※2) =2×3-[2×2-(-3)]
=6-(4+3)
=6-7
=-1;
故答案为:A.
7.有个填写运算符号的游戏:在“2□3□6-5”中的每个□内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果,则计算所得结果的最小值为( )
A.-23 B.-21 C.-12 D.-5
【答案】B
【解析】根据题意得,
计算结果的最小值为:2-3×6-5=-21;
故答案为:-21.
8.计算:的结果是
A.0 B. C. D.51
【答案】D
【解析】 =(1-2)+(3-4)+(5-6)+...+(99-100)+101=-1×50+101=51.
故答案为:D.
9.按规律1,8,27,( ),125、216的规律排,括号里的数应为( ).
A.30 B.64 C.80 D.100
【答案】B
【解析】1=13,8=23,27= 33, 125= 53
∴第4个数为:43=64.
故答案为:B
10.今年“十一”期间,广州部分公园举行游园活动,据统计,天河公园早晨时分有人进入公园,接下来的第一个分钟内有人进去人出来,第二个分钟内有人进去人出来,第三个分钟内有人进去人出来,第四个分钟内有人进去人出来.按照这种规律进行下去,到上午时分公园内的人数是( )
A. B. C. D.
【答案】B
【解析】根据已有数据可得规律为:从6点30分进园人数为21人,然后每个30分钟进园人数分别为:22,23,24,25......,出园人数分别为:6点30分为0人,然后每个30分钟出园人数分别为:1,2,3,4......
∵11点30分-6点30分=5(小时)=10个30分钟,
∴上午时分公园内的人数是 :2+22-1+23-2+24-3+25-4+26-5+27-6+28-7+29-8+210-9+211-10=(2+21+22+23+......+211)-(1+2+3+4+......+10)==212-57.
故答案为:B。
二、填空题(本大题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.如果一个数的倒数是﹣ ,那么这个数的相反数是 .
【答案】2
【解析】∵一个数的倒数是﹣
∴这个数是﹣2,
∴这个数的相反数是:2.
故答案为:2.
12.比﹣3大而比2小的所有整数的和为 .
【答案】-3
【解析】根据题意可得比﹣3大而比2小的整数有:-3,-2,-1,0,1,2,
∴所有整数的和为(-3)+(-2)+(-1)+0+1+2=-3,
故答案为:-3.
【分析】先求出所有符合题意的整数,再列出算式求解即可.
13.已知|x|=3,|y|=16,xy<0,则x﹣y= .
【答案】﹣19或19
【解析】∵|x|=3,|y|=16,xy<0,
∴x=3,y=﹣16;x=﹣3,y=16,
则x﹣y=﹣19或19,
故答案为:﹣19或19
14.某公交车原坐有人,经过个站点时上下车情况如下(上车为正,下车为负):,,,,则车上还有 人.
【答案】13
【解析】∵公交车原坐有人,上车为正,下车为负, 经过个站点时上下车情况为:(+3,-6),(-5,+8),(-4,+2),(+1,-8),
∴22+3+(-6)+(-5)+8+(-4)+2+1+(-8)
=(22+3+8+2+1)+[(-6)+(-5)+(-4)+(-8)]
=36+(-23)
=13(人),
∴经过个站点后车上还有人,
故答案为:.
15.我国已成功申办2008年的第29届奥运会.按每4年一次,第50届奥运会将在 年举行,这一年共有 天.
【答案】2092;366
【解析】2008+4×(50-29)=2092,
∵2092÷4=523,
故2092年是闰年,这一年共有366天.
故答案为:2092;366
16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律,写出22021的末位数字是 .
【答案】2
【解析】由21=2,22=4,23=8,24=16,…可以发现他们的末尾数字是4个数一个循环,2,4,8,6,…
∵2021÷4=505…1,
∴22021的末位数字与21的末尾数字相同是2.
故答案为:2.
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
解答应写出文字说明,证明过程或推演步骤.
17.计算:
(1)
(2)
(3)
(4)
【答案】(1)解:
(2)解:
(3)解:
(4)解:=
18.已知算式“(-9)×2-5”.
(1)嘉嘉将数字“5”抄错了,所得结果为-21,则嘉嘉把“5”错写成了 ;
(2)淇淇不小心把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?
【答案】(1)3
(2)解:原题正确结果(-9)×2-5=-18-5=-23,
淇淇的结果:(-9)+2-5=-12,
-12-(-23)=-12+23=11,
所以结果比原题的正确结果大11.
【解析】设嘉嘉把“5”错写成了x,则
(-9)×2-x=-21,
解得:x=3。
故答案为:3.
19.为了增强体质,小明给自己设定:以每天跑步千米为基准,超过的部分记为正,不足的部分记为负,手机应用程序统计小明一周跑步情况,记录如下:
星期 一 二 三 四 五 六 日
与基准的差千米
小明周六和周日共跑了千米.
(1)求的值.
(2)小明本周共跑了多少千米?
【答案】(1)解:,
解得
(2)解:千米,
答:小明本周共跑了千米.
20.若互为相反数,互为倒数,的绝对值为2.
(1)请直接写出的值;
(2)求的值.
【答案】(1)解:,,
(2)解:①当时,原式.
②当时,原式.
所以的值为3或
21.学习有理数的乘法后,老师给同学们这样一道题目:计算:,看谁算的又快又对,有两位同学的解法如下:
小明,原式;
小军:原式;
(1)根据上面的解法对你的启发,请你再写一种解法;
(2)用你认为最合适的方法计算:.
【答案】(1)解:
;
(2)解:
.
22.如图,小明有5张写有不同数字的卡片,请你按题目要求抽取卡片,完成问题:
(1)从中抽取2张卡片,使这两张卡片上的数字的乘积最大,如何抽取?最大值是多少?
(2)从中抽取2张卡片,使这两张卡片上的数字的商最小,如何抽取?最小值是多少?
(3)从中抽取4张卡片,用学过的运算方法,使计算结果为24,如何抽取?试写出一个算式.
【答案】(1)解:抽取卡片上的数字是-3和-5的两张卡片,最大值为: ;
(2)解:抽取卡片上的数字是1和-5的两张卡片,这两张卡片上数字的商最小值是:
(3)解:抽取卡片上的数字是-3,-5,1,+3的四张卡片,算式为: (答案不唯一).
23.如图所示,将一个边长为1的正方形纸片分割成7个部分,部分①的面积是边长为1的正方形纸片面积的一半,部分②的面积是部分①面积的一半,部分③的面积是部分②面积的一半,以此类推.
(1)图中的阴影部分面积是 ;
(2)受此启发,得到 .
(3)进而计算:
【答案】(1)
(2)
(3)解:根据题目(2)中式子规律可得:
.
【解析】(1)根据图形变化规律可以得知,如图(1)中的阴影部分面积是,
故答案为:.
(2)利用正方形面积相等可以列出关系式:
.
故答案为:
24.认真观察下面的序列等式的变化,寻找“将一项拆成两项”的规律:
,,,,,…
用上面的思路,解答下列问题:
(1)写出上面序列等式的第n个等式;
(2)计算:;
(3)计算:.
【答案】(1)解:根据上面序列等式,得第个等式为;
(2)解:
=
=
=
;
(3)解:,
,
∴
=
=
=
.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
浙教版2024-2025学年七年级上数学第2章有理数的运算 培优测试卷4
考试时间:120分钟 满分:120分
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.计算 的结果是( )
A.6 B.3 C.0 D.-6
2.下列说法正确的是 ( )
A.2的倒数是-2 B.3的相反数是
C.绝对值最小的数是1 D.0的相反数是0
3.下列各组数中,相等的一组是( )
A.(﹣2)3与﹣23 B.(﹣2)2与﹣22
C.(﹣3×2)3与3×(﹣2)3 D.﹣32与(﹣3)+(﹣3)
4.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )
A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109
5.下列说法正确的是( )
A.近似数0.010精确到0.01.
B.近似数43.0精确到个位
C.近似数2.8与2.80表示的意义相同
D.近似数4.3万精确到千位
6.已知a为有理数,定义运算符号“※”:当a>b时,a※b=2a;当aA.-1 B.5 C.-6 D.10
7.有个填写运算符号的游戏:在“2□3□6-5”中的每个□内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果,则计算所得结果的最小值为( )
A.-23 B.-21 C.-12 D.-5
8.计算:的结果是
A.0 B. C. D.51
9.按规律1,8,27,( ),125、216的规律排,括号里的数应为( ).
A.30 B.64 C.80 D.100
10.今年“十一”期间,广州部分公园举行游园活动,据统计,天河公园早晨时分有人进入公园,接下来的第一个分钟内有人进去人出来,第二个分钟内有人进去人出来,第三个分钟内有人进去人出来,第四个分钟内有人进去人出来.按照这种规律进行下去,到上午时分公园内的人数是( )
A. B. C. D.
二、填空题(本大题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.如果一个数的倒数是﹣ ,那么这个数的相反数是 .
12.比﹣3大而比2小的所有整数的和为 .
13.已知|x|=3,|y|=16,xy<0,则x﹣y= .
14.某公交车原坐有人,经过个站点时上下车情况如下(上车为正,下车为负):,,,,则车上还有 人.
15.我国已成功申办2008年的第29届奥运会.按每4年一次,第50届奥运会将在 年举行,这一年共有 天.
16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律,写出22021的末位数字是 .
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
解答应写出文字说明,证明过程或推演步骤.
17.计算:
(1) (2)
(3) (4)
18.已知算式“(-9)×2-5”.
(1)嘉嘉将数字“5”抄错了,所得结果为-21,则嘉嘉把“5”错写成了 ;
(2)淇淇不小心把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?
19.为了增强体质,小明给自己设定:以每天跑步千米为基准,超过的部分记为正,不足的部分记为负,手机应用程序统计小明一周跑步情况,记录如下:
星期 一 二 三 四 五 六 日
与基准的差千米
小明周六和周日共跑了千米.
(1)求的值.
(2)小明本周共跑了多少千米?
20.若互为相反数,互为倒数,的绝对值为2.
(1)请直接写出的值;
(2)求的值.
21.学习有理数的乘法后,老师给同学们这样一道题目:计算:,看谁算的又快又对,有两位同学的解法如下:
小明,原式;
小军:原式;
(1)根据上面的解法对你的启发,请你再写一种解法;
(2)用你认为最合适的方法计算:.
22.如图,小明有5张写有不同数字的卡片,请你按题目要求抽取卡片,完成问题:
(1)从中抽取2张卡片,使这两张卡片上的数字的乘积最大,如何抽取?最大值是多少?
(2)从中抽取2张卡片,使这两张卡片上的数字的商最小,如何抽取?最小值是多少?
(3)从中抽取4张卡片,用学过的运算方法,使计算结果为24,如何抽取?试写出一个算式.
23.如图所示,将一个边长为1的正方形纸片分割成7个部分,部分①的面积是边长为1的正方形纸片面积的一半,部分②的面积是部分①面积的一半,部分③的面积是部分②面积的一半,以此类推.
(1)图中的阴影部分面积是 ;
(2)受此启发,得到 .
(3)进而计算:
24.认真观察下面的序列等式的变化,寻找“将一项拆成两项”的规律:
,,,,,…
用上面的思路,解答下列问题:
(1)写出上面序列等式的第n个等式;
(2)计算:;
(3)计算:.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)