中小学教育资源及组卷应用平台
不等式应用题专项训练
1.蔬菜经营户老王,近两天经营的是青菜和西兰花.
(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰花各进了多少斤?
青菜 西兰花
进价(元/斤) 2.6 3.4
售价(元/斤) 3.6 4.6
(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?
2.“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,“一盔”是指安全头盔,电动自行车驾驶人和乘坐人员应当戴安全头盔,某商场欲购进一批头盔,已知购进4个甲型头盔和3个乙型头盔需要315元,购进3个甲型头盔和4个乙型头盔需要350元.
(1)购进1个甲型头盔和1个乙型头盔分别需要多少元?
(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,则最多可购进乙型头盔多少个?
(3)在(2)的条件下,若该商场分别以58元/个、98元/个的价格销售完甲,乙两种型号的头盔200个,能否实现利润不少于6190元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
3.某校计划为足球兴趣小组重新购买A、B两种足球.经调研得知:购买1个A型足球和2个B型足球共需800元,购买3个A型足球和2个B型足球共需1200元.
(1)求每个A型足球和B型足球各多少元;
(2)若该学校准备购买A、B两种足球共20个(每种至少买一个);要求总费用不超过5000元,则对购买A型足球在数量上有什么要求?说明理由;
(3)在(2)的条件下,若甲、乙两商店以同样价格出售这两种足球,同时又各自推出不同的优惠方案:在甲店购买A型足球按原价80%收费,B型足球不优惠;在乙店购买A型足球不优惠,但购买B型足球按原价80%收费;则学校到哪家商店购买足球花费少?
4.某小区为激励更多居民积极参与“分类适宜,垃圾逢春”活动,决定购买拖把和扫帚作为奖品,奖励给垃圾分类表现优异的居民.若购买3把拖把和2把扫帚共需80元,购买2把拖把和1把扫帚共需50元.
(1)请问拖把和扫帚每把各多少元?
(2)现准备购买拖把和扫帚共200把,且要求购买拖把的费用不低于购买扫帚的费用,所有购买的资金不超过2690元,问有几种购买方案,哪种方案最省钱?
5.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销,某药店售出一批口罩.已知3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个.
(1)求儿童口罩和成人口罩的每包各是多少个?
(2)某家庭欲购进这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个,
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
6.2020年7月27日,金华城东东湖畈地力提升项目现场,金色的早稻田一望无际.大型收割机依次排开,在田间来回穿梭,伴随着机器轰鸣的声音,金灿灿的稻谷被尽数收入“囊中”.已知1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷.
(1)每台大型收割机和小型收割机1小时可收割水稻多少公顷?
(2)大型收割机每小时费用300元,小型收割机每小时费用为200元,两种型号的收割机一共10台,要求2小时完成8公顷水稻的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
7.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
销售时段 销售数量 销售收入
A种型号 B种型号
第一周 3台 5台 18000元
第二周 4台 10台 31000元
(1)求A、B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于54000元的金额再采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?
8.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)
9.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.
(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?
(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?
10.某公司计划购买A,B两种型号的打印机共20台,通过市场调研发现,购买3台A型打印机和4台B型打印机需6180元,购买4台A型打印机和6台B型打印机需8840元.
(1)购买A,B两种型号打印机每台的价格分别是多少元?
(2)根据公司实际情况,要求购买A型打印机的数量不超过B型打印机数量的一半,且购买这两种型号打印机的总费用不能超过17800元,该公司按计划购买A,B两种型号打印机共有几种购买方案?
(3)在(2)的条件下,哪种方案费用最低?并求出最低费用.
11.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
不等式应用题专项训练
1.蔬菜经营户老王,近两天经营的是青菜和西兰花.
(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰花各进了多少斤?
青菜 西兰花
进价(元/斤) 2.6 3.4
售价(元/斤) 3.6 4.6
(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?
【分析】(1)设老王昨天批发青菜x斤,西兰花y斤,根据总价=单价×数量结合老王用600元批发青菜和西兰花共200斤,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设青菜每斤售价为a元,根据利润=销售收入﹣成本结合当天售完后所赚的钱不少于昨天所赚的钱,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
【解答】解:(1)设老王昨天批发青菜x斤,西兰花y斤,
根据题意得:,
解得:.
答:老王昨天批发青菜100斤,西兰花100斤.
(2)设青菜每斤售价为a元,
根据题意得:100(1﹣10%)a+100×4.6﹣600≥100×(3.6﹣2.6)+100×(4.6﹣3.4),
解得:a≥4.
答:青菜每斤售价至少为4元.
2.“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,“一盔”是指安全头盔,电动自行车驾驶人和乘坐人员应当戴安全头盔,某商场欲购进一批头盔,已知购进4个甲型头盔和3个乙型头盔需要315元,购进3个甲型头盔和4个乙型头盔需要350元.
(1)购进1个甲型头盔和1个乙型头盔分别需要多少元?
(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,则最多可购进乙型头盔多少个?
(3)在(2)的条件下,若该商场分别以58元/个、98元/个的价格销售完甲,乙两种型号的头盔200个,能否实现利润不少于6190元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
【分析】(1)根据题意列二元一次方程组并求解即可;
(2)设乙型头盔m个,根据所需费用=数量×单价,计算甲、乙头盔总费用列不等式,求得乙型头盔m的最大值;
(3)根据利润=单件利润×数量,列不等式,求出乙型头盔m的取值范围,结合(2)中答案确定m的取值范围,即可得出可选方案.
【解答】解:(1)设购进1个甲型头盔需要x元,购进1个乙型头盔需要y元.
根据题意,得,
解得,;
答:购进1个甲型头盔需要30元,购进1个乙型头盔需要65元;
(2)设购进乙型头盔m个,则购进甲型头盔(200﹣m)个,
根据题意,得:65m+30(200﹣m)≤10200,
解得:m≤120,
∴m的最大值为120;
答:最多可购进乙型头盔120个;
(3)能,理由如下:
根据题意,得:(58﹣30)(200﹣m)+(98﹣65)m≥6190;
解得:m≥118;
∴118≤m≤120;
∵m为整数,
∴m可取118,119或120,对应的200﹣m的值分别为82,81或80;
因此能实现利润不少于6190元的目标,该商场有三种采购方案:
①采购甲型头盔82个,采购乙型头盔118个;
②采购甲型头盔81个,采购乙型头盔119个;
③采购甲型头盔80个,采购乙型头盔120个.
3.某校计划为足球兴趣小组重新购买A、B两种足球.经调研得知:购买1个A型足球和2个B型足球共需800元,购买3个A型足球和2个B型足球共需1200元.
(1)求每个A型足球和B型足球各多少元;
(2)若该学校准备购买A、B两种足球共20个(每种至少买一个);要求总费用不超过5000元,则对购买A型足球在数量上有什么要求?说明理由;
(3)在(2)的条件下,若甲、乙两商店以同样价格出售这两种足球,同时又各自推出不同的优惠方案:在甲店购买A型足球按原价80%收费,B型足球不优惠;在乙店购买A型足球不优惠,但购买B型足球按原价80%收费;则学校到哪家商店购买足球花费少?
【分析】(1)设每个A型足球x元,每个B型足球y元,根据“购买1个A型足球和2个B型足球共需800元,购买3个A型足球和2个B型足球共需1200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买A型足球m个,则购买B型足球(20﹣m)个,利用总价=单价×数量,结合总价不超过5000元,可列出关于m的一元一次不等式,解之可得出m的取值范围,再结合m,20﹣m均为正整数,即可得出购买A型足球的数量不少于10个且不超过19个;
(3)利用总价=单价×数量,结合两家商店给出的优惠方案,可用含m的代数式分别表示出在甲乙两家商店购买所需费用,再分140m+6000<﹣40m+4800,140m+6000=﹣40m+4800及140m+6000>﹣40m+4800三种情况,求出m的取值范围或m的值,即可得出结论.
【解答】解:(1)设每个A型足球x元,每个B型足球y元,
根据题意得:,
解得:.
答:每个A型足球200元,每个B型足球300元;
(2)购买A型足球的数量不少于10个且不超过19个,理由如下:
设购买A型足球m个,则购买B型足球(20﹣m)个,
根据题意得:200m+300(20﹣m)≤5000,
解得:m≥10,
又∵m,20﹣m均为正整数,
∴10≤m≤19且m为整数,
∴购买A型足球的数量不少于10个且不超过19个;
(3)在甲店所需费用为200×80%×m+300(20﹣m)=(﹣140m+6000)(元);
在乙店所需费用为200m+300×80% (20﹣m)=(﹣40m+4800)(元).
当﹣140m+6000<﹣40m+4800时,解得:m>12;
当﹣140m+6000=﹣40m+4800时,解得:m=12;
当﹣140m+6000>﹣40m+4800时,解得:m<12.
∴当12<m≤19时选择甲店购买足球花费少,当m=12时选择甲乙两家店花费一样多,当10≤m<12时选择乙店购买足球花费少.
4.某小区为激励更多居民积极参与“分类适宜,垃圾逢春”活动,决定购买拖把和扫帚作为奖品,奖励给垃圾分类表现优异的居民.若购买3把拖把和2把扫帚共需80元,购买2把拖把和1把扫帚共需50元.
(1)请问拖把和扫帚每把各多少元?
(2)现准备购买拖把和扫帚共200把,且要求购买拖把的费用不低于购买扫帚的费用,所有购买的资金不超过2690元,问有几种购买方案,哪种方案最省钱?
【分析】(1)设拖把每把x元,扫帚每把y元,根据题意:购买3把拖把和2把扫帚共需80元,购买2把拖把和1把扫帚共需50元,列方程组求解;
(2)设购买拖把a把,则扫帚(200﹣a)把,结合(1)中的数据,列不等式组求得a的取值范围即可求解.
【解答】解:(1)设拖把每把x元,扫帚每把y元,依题意有
,
解得:.
答:拖把每把20元,扫帚每把10元.
(2)设购买拖把a把,则扫帚(200﹣a)把,依题意有
,
解得a≤69,
∵a为整数,
∴a=67,68,69,
∴有3种购买方案,①买拖把67把,扫帚133把;②买拖把68把,扫帚132把;③买拖把69把,扫帚131把.
当a=67时,共花费67×20+133×10=2670(元);
当a=68时,共花费68×20+132×10=2680(元);
当a=69时,共花费69×20+131×10=2690(元);
∵2670<2680<2690,
∴选择方案买拖把67把,扫帚133把最省钱.
5.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销,某药店售出一批口罩.已知3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个.
(1)求儿童口罩和成人口罩的每包各是多少个?
(2)某家庭欲购进这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个,
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
【分析】(1)设儿童口罩每包x个,成人口罩每包y个,根据:“3包儿童口罩和2包成人口罩共26个,5包儿童口罩和3包成人口罩共40个”列方程组求解即可;
(2)①设购买儿童口罩m包,根据“这两种型号的口罩共5包,为使其中口罩总数量不低于26个,且不超过34个”列出不等式组,确定m的取值,进而解决问题;
②分别求出每个方案的费用即可解决问题.
【解答】解:(1)设儿童口罩每包x个,成人口罩每包y个,根据题意得,
,
解得,,
∴儿童口罩每包2个,成人口罩每包10个;
(2)①设购买儿童口罩m包,则购买成人口罩(5﹣m)包,根据题意得,
,
解得,2≤m≤3,
∵m为整数,
∴m=2或m=3,
∴共有两种购买方案:方案一:购买儿童口罩2包,则购买成人口罩3包;方案二:购买儿童口罩3包,则购买成人口罩2包.
②方案一的总费用为:2×8+3×25=91元;
方案二的总费用为:3×8+2×25=74元.
∵91>74,
∴方案二的总费用最少.
6.2020年7月27日,金华城东东湖畈地力提升项目现场,金色的早稻田一望无际.大型收割机依次排开,在田间来回穿梭,伴随着机器轰鸣的声音,金灿灿的稻谷被尽数收入“囊中”.已知1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷.
(1)每台大型收割机和小型收割机1小时可收割水稻多少公顷?
(2)大型收割机每小时费用300元,小型收割机每小时费用为200元,两种型号的收割机一共10台,要求2小时完成8公顷水稻的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
【分析】(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,根据要求2小时完成8公顷水稻的收割任务且总费用不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出方案的个数,设总费用为w元,根据总费用=每台机器1小时所需费用×使用机器的数量×2,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.
【解答】解:(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,
依题意得:,
解得:.
答:每台大型收割机1小时可收割水稻0.5公顷,每台小型收割机1小时可收割水稻0.3公顷.
(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,
依题意得:,
解得:5≤m≤7.
又∵m为整数,
∴m可以取5,6,7,
∴共有3种方案.
设总费用为w元,则w=2×[300m+200(10﹣m)]=200m+4000,
∵200>0,
∴当m=5时,w取得最小值,最小值=200×5+4000=5000(元),
即当使用5台大型收割机、5台小型收割机时,总费用最低,最低费用为5000元.
7.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
销售时段 销售数量 销售收入
A种型号 B种型号
第一周 3台 5台 18000元
第二周 4台 10台 31000元
(1)求A、B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于54000元的金额再采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?
【分析】(1)设A种型号的净水器的销售单价为x元/台,B种型号的净水器的销售单价为y元/台,根据总价=单价×数量结合该公司近两周的销售情况表中的数据,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设采购A种型号的净水器m台,则采购B种型号的净水器(30﹣m)台,根据总价=单价×数量结合采购金额不多于54000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解答】解:(1)设A种型号的净水器的销售单价为x元/台,B种型号的净水器的销售单价为y元/台,
根据题意得:,
解得:.
答:A种型号的净水器的销售单价为2500元/台,B种型号的净水器的销售单价为2100元/台.
(2)设采购A种型号的净水器m台,则采购B种型号的净水器(30﹣m)台,
根据题意得:2000m+1700(30﹣m)≤54000,
解得:m≤10.
答:A种型号的净水器最多能采购10台.
8.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)
【分析】(1)设甲种材料每千克x元,乙种材料每千克y元,根据题意列出方程,解方程即可;
(2)设生产B产品a件,生产A产品(60﹣a)件.根据题意得出一元一次不等式组,解不等式组即可得出结果;
(3)设生产成本为W元,根据题意得出W是a的一次函数,即可得出结果.
【解答】解:(1)设甲种材料每千克x元,乙种材料每千克y元,
依题意得:,
解得:;
答:甲种材料每千克25元,乙种材料每千克35元.
(2)设生产B产品a件,生产A产品(60﹣a)件.
依题意得:
解得:38≤a≤40;
∵a的值为非负整数,
∴a=38、39、40;
答:共有如下三种方案:
方案1、A产品22个,B产品38个,
方案2、A产品21个,B产品39个,
方案3、A产品20个,B产品40个;
(3)生产A产品22件,B产品38件成本最低.理由如下:
设生产成本为W元,则W与a的关系式为:
W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,
即W是a的一次函数,
∵k=55>0,
∴W随a增大而增大,
∴当a=38时,总成本最低;
即生产A产品22件,B产品38件成本最低.
9.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.
(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?
(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?
【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;
(2)根据题意可以列出不等式组,从而可以求得购买方案,并求出哪种方案所需资金最少,最少资金是多少.
【解答】解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,
,
解得,,
答:A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;
(2)方法一:设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,
,解得,20≤m≤22,
∵m为整数,
∴m=20,21,22,
∴共有三种购买方案,
方案一:购买A型扫地车20辆,B型扫地车20辆;
方案二:购买A型扫地车21辆,B型扫地车19辆;
方案三:购买A型扫地车22辆,B型扫地车18辆;
∵y=25m+20(40﹣m)=5m+800,
∴当m=20时,y取得最小值,此时y=900,
答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.
方法二:设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,
,解得,20≤m≤22,
∵m为整数,
∴m=20,21,22,
∴共有三种购买方案,
方案一:购买A型扫地车20辆,B型扫地车20辆,费用为:25×20+20×20=900(万元);
方案二:购买A型扫地车21辆,B型扫地车19辆,费用为:25×21+20×19=905(万元);
方案三:购买A型扫地车22辆,B型扫地车18辆,费用为:25×22+20×18=910(万元);
由上可得,方案一所需费用最少,
答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.
10.某公司计划购买A,B两种型号的打印机共20台,通过市场调研发现,购买3台A型打印机和4台B型打印机需6180元,购买4台A型打印机和6台B型打印机需8840元.
(1)购买A,B两种型号打印机每台的价格分别是多少元?
(2)根据公司实际情况,要求购买A型打印机的数量不超过B型打印机数量的一半,且购买这两种型号打印机的总费用不能超过17800元,该公司按计划购买A,B两种型号打印机共有几种购买方案?
(3)在(2)的条件下,哪种方案费用最低?并求出最低费用.
【分析】(1)设购买A种型号打印机每台的价格是x元,购买B种型号打印机每台的价格是y元,根据购买3台A型打印机和4台B型打印机需6180元;购买4台A型打印机和6台B型打印机需8840元列方程组求解;
(2)设购买A种型号打印机m台,则购买B种型号打印机(20﹣m)台,根据题意可列出不等式组求解.
(3)根据求出的购买方案直接计算可得出答案.
【解答】解:(1)设购买A种型号打印机每台的价格是x元,购买B种型号打印机每台的价格是y元,依题意有:
,
解得.
故购买A种型号打印机每台的价格是860元,购买B种型号打印机每台的价格是900元;
(2)设购买A种型号打印机m台,则购买B种型号打印机(20﹣m)台,依题意有:
,
解得:5≤m.
故共有两种购买方案:
购买A种型号打印机5台,购买B种型号打印机15台;
购买A种型号打印机6台,购买B种型号打印机14台.
(3)若购买A种型号打印机5台,购买B种型号打印机15台,费用为860×5+900×15=17800(元);
若购买A种型号打印机6台,购买B种型号打印机14台,费用为860×6+900×14=17760(元);
∵17800>17760,
∴购买A种型号打印机6台,购买B种型号打印机14台,费用最低,最低费用为17760元.
11.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
【分析】(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;
(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.
【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,
则:,
解之得.
答:A种型号的衣服每件90元,B种型号的衣服100元;
(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,
可得:,
解之得,
∵m为正整数,
∴m=10、11、12,2m+4=24、26、28.
答:有三种进货方案:
(1)B型号衣服购买10件,A型号衣服购进24件;
(2)B型号衣服购买11件,A型号衣服购进26件;
(3)B型号衣服购买12件,A型号衣服购进28件.