第二章 简单事件的概率综合能力测试卷
班级 姓名 学号
一、选择题(共10小题,每小题3分,满分30分)
1、下列事件中是确定事件的是( )
A.篮球运动员身高都在2米以上 B.弟弟的体重一定比哥哥的轻
C.明年教师节一定是晴天 D.吸烟有害身体健康
2、展览馆有A,B两个入口,D、E、F三个出口,则从A入口进,F出口出的概率是( )
A. B. C. D.
3、在一个不透明的口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是( )
A. B. C. D.
4、在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )【出处:21教育名师】
A. B. C. D.
5、质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是( )
A. 5 B. 100 C. 500 D. 10 000
6、定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( )
A. B. C. D.
7、分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
A. B. C. D.
8、一个不透明的袋子中有3个分别标有3,1,-2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是 ( )。
A. B. C. D.
9、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( )21cnjy.com
A. B. C. D.
10、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )
A. B. C. D.
二、填空题(共6小题,每小题4分,满分24分)
11、为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.
12、一个不透明的袋子中只装有1个红球和2个蓝球,它们除颜色外其余都相同。现随机从袋中摸出两个球,颜色是一红一蓝的概率是
13、如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 .www-2-1-cnjy-com
14、“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .
15、已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________.
16、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是 .
三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.
17、(6分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.
18、(8分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
19、(8分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4. 随机地摸取出一张纸牌,然后放回,再随机摸取出一张纸牌.
(1)计算两次摸取纸牌上的数字之和为5的概率(要有分析过程);
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这是个公平的游戏吗?请说明理由.
20、(10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.
(1)用树形图获列表法列出所有可能情形;
(2)求2名主持人来自不同班级的概率;
(3)求2名主持人恰好1男1女的概率.
21、(10分)某校八年级(1)班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:
(1)求D等级所对扇形的圆心角,并将条形统计图补充完整;
(2)该组达到A等级的同学中只有1位男同学,杨老师打算从该组达到A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.
22、(12分)某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因;
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.
23、(12分)某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).2-1-c-n-j-y
(1)求出该班的总人数,并补全频数分布直方图;
(2)求出“足球”在扇形的圆心角是多少度;
(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
答案详解
一、选择题(共10小题,每小题3分,满分30分)
【解答】解:绿球的球的个数为3,球的总数为4+3+2=9,
∴随机地从中摸出一个球是绿球的概率是,
故选C.
4、在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )【来源:21·世纪·教育·网】
A. B. C. D.
【解答】解:画树状图得:
∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,
∴两次摸出的小球的标号相同的概率是:=.
故选C.
5、质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是( )
A. 5 B. 100 C. 500 D. 10 000
【解答】解:∵100件样品中,检测出次品5件,∴次品率为5%.
∴估计这一批次产品中的次品件数是(件).
故选C.
6、定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( )www.21-cn-jy.com
A. B. C. D.
【解答】解:画树状图得:
∵可以组成的数有:321,421,521,123,423,523,124,324,524,125,325,425,【来源:21cnj*y.co*m】
其中是“V数”的有:423,523,324,524,325,425六个,
∴从1,3,4,5中任选两数,能与2组成“V数”的概率是:。故选C。
7、分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )21*cnjy*com
A. B. C. D.
【解答】解:用是负数的卡片数除以总卡片数即为所求的概率,即可选出:
∵五张卡片分别标有0,-1,-2,1,3五个数,数字为负数的卡片有2张,
∴从中随机抽取一张卡片数字为负数的概率为。
故选B。
8、一个不透明的袋子中有3个分别标有3,1,-2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是 ( )。
A.1/2 B.1/3 C.2/3 D.1/6
【解答】解:列表法:
3
1
-2
3
——
(1,3)
(-2,3)
1
(3,1)
——
(-2,1)
-2
(3,-2)
(1,-2)
——
所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P=2/6=1/3.
故选B。
9、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( )
A. B. C. D.
【解答】解:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。因此,
列表得:
1
2
3
4
1
﹣﹣﹣
(2,1)
(3,1)
(4,1)
2
(1,2)
﹣﹣﹣
(3,2)
(4,2)
3
(1,3)
(2,3)
﹣﹣﹣
(4,3)
4
(1,4)
(2,4)
(3,4)
﹣﹣﹣
∵所有等可能的情况有12种,其中之和为奇数的情况有8种,
∴两次摸出的小球的标号的和为奇数的概率是。 故选B。
10、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是( )
A. B. C. D.
【解答】解:如图,C1,C2,C3,均可与点A和B组成直角三角形.
P=,
故选C.
二、填空题(共6小题,每小题4分,满分24分)
11、为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.
【解答】解:设暗箱里白球的数量是n,则根据题意得:=0.2,
解得:n=20,
故答案为:20.
12、一个不透明的袋子中只装有1个红球和2个蓝球,它们除颜色外其余都相同。现随机从袋中摸出两个球,颜色是一红一蓝的概率是
【解答】解:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,21世纪教育网版权所有
∵共有种等可能结果:(红球,蓝球1),(红球,蓝球2),(蓝球1,蓝球2),颜色是一红一蓝的情况有两种:(红球,蓝球1),(红球,蓝球2),
∴随机从袋中摸出两个球,颜色是一红一蓝的概率是.
13、如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 .2·1·c·n·j·y
【解答】解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,
∴指针指向红色的概率为:.
故答案为:.
14、“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= .
【解答】解:画树状图得:
∵共有9种等可能的结果,双方出现相同手势的有3种情况,
∴双方出现相同手势的概率P=。
15、已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________.
【解答】解:四条线段组成三角形三边有四种情况: .
其中不能组成三角形,
所以从中任取三条线段能组成三角形的概率是.
16、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是 .21·世纪*教育网
【解答】解:设三张风景图片分别剪成相同的两片为:
A1,A2,B1,B2,C1,C2;
如图所示:
,
所有的情况有36种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.
故答案为:.
三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.
17、(6分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.
【解答】解:(1)设红球的个数为个,
则根据题意,得,解得(检验合适).
∴布袋里红球有2个.
(2)画树状图如下:
∵两次摸球共有12种等可能结果,两次摸到的球都是白球的情况有2种,
∴两次摸到的球都是白球的概率为.
18、(8分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.
【解答】解:(1)根据题意得:100×=30,
答:袋中红球有30个.
(2)设白球有x个,则黄球有(2x-5)个,
根据题意得x+2x-5=100-30,解得x=25。
∴摸出一个球是白球的概率为。
(3)∵取走10个球后,还剩90个球,其中红球的个数没有变化,
∴从剩余的球中摸出一个球是红球的概率为。
19、(8分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4. 随机地摸取出一张纸牌,然后放回,再随机摸取出一张纸牌.
(1)计算两次摸取纸牌上的数字之和为5的概率(要有分析过程);
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这是个公平的游戏吗?请说明理由.21教育网
【解答】解:用树状图法
第一次: 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
和 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8
由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等.
(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)==
(2)这个游戏公平,理由如下:
两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)==两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)==两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.21·cn·jy·com
20、(10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人. 21*cnjy*com
(1)用树形图获列表法列出所有可能情形;
(2)求2名主持人来自不同班级的概率;
(3)求2名主持人恰好1男1女的概率.
【解答】解:(1)画树状图得:
共有20种等可能的结果,
(2)∵2名主持人来自不同班级的情况有12种,
∴2名主持人来自不同班级的概率为:=;
(3)∵2名主持人恰好1男1女的情况有12种,
∴2名主持人恰好1男1女的概率为:=.
21、(10分)某校八年级(1)班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:【版权所有:21教育】
(1)求D等级所对扇形的圆心角,并将条形统计图补充完整;
(2)该组达到A等级的同学中只有1位男同学,杨老师打算从该组达到A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.21教育名师原创作品
【解答】解:(1)总人数=5÷25%=20,
∴D级学生的人数占全班总人数的百分数为:×100%=15%,
扇形统计图中D级所在的扇形的圆心角为15%×360°=54°.
由题意得:B等级的人数=20×40%=8(人),A等级的人数=20×20%=4.
(2)根据题意画出树状图如下:
一共有12种情况,恰好是1位男同学和1位女同学有7种情况,
所以,P(恰好是1位男同学和1位女同学)=.
22、(12分)某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因;
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.
【解答】解:(1)∵红球有2x个,白球有3x个,
∴P(红球)==,P(白球)==,
∴P(红球)< P(白球),∴这个办法不公平.
(2)取出3个白球后,红球有2x个,白球有(3x-3)个,
∴P(红球)=,P(白球)=,x为正整数,
∴P(红球)- P(白球) =.
①当x<3时,则P(红球)> P(白球),∴对小妹有利.
②当x=3时,则P(红球)= P(白球),∴对小妹、小明是公平的.
③当x>3时,则P(红球)< P(白球),∴对小明有利.
23、(12分)某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
(1)求出该班的总人数,并补全频数分布直方图;
(2)求出“足球”在扇形的圆心角是多少度;
(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
【解答】解:(1)∵C有12人,占24%,
∴该班的总人数有:12÷24%=50(人),
∴E有:50×10%=5(人),
A有50﹣7﹣12﹣9﹣5=17(人),
补全频数分布直方图为:
(2)“足球”在扇形的圆心角是:360°×=50.4°;
(3)画树状图得:
∵共有12种等可能的结果,选出的2人恰好1人选修篮球,1人选修足球的有4种情况,
∴选出的2人恰好1人选修篮球,1人选修足球的概率为: =.