2.1有理数的加法课件(2课时)

文档属性

名称 2.1有理数的加法课件(2课时)
格式 zip
文件大小 3.8MB
资源类型 教案
版本资源 浙教版
科目 数学
更新时间 2016-06-02 21:46:39

文档简介

课件16张PPT。2.1 有理数的加法①教学目标:
1.通过实例经历加法法则的产生过程.
2.掌握有理数的加法法则.
3.会利用加法法则求两个有理数的和,会在数轴上表示两个有理数相加.
重难点:
●本节教学的重点是有理数的加法法则.
●有理数加法法则的发生过程比较复杂,异号两数相加涉及绝对值相减、确定和的符号,学生不容易掌握,容易发生差错,是本节教学的难点.怎样计算仓库内进出货物的累计数量和库存变化?
同号两数相加,取与加数相同的符号,并把绝对值相加.异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;一个数同0相加,仍得这个数.例1 计算下列各式:
(1)(-11)+(-9).(2)(-3.5)+(+7).
(3)(-1.08)+0. (4)( )+( ).解:(1)(-11)+(-9)=-(11+9)=-20.(2)(-3.5)+(+7)=+(7-3.5)=+3.5.(3)(-1.08)+0=-1.08.(4)( )+( )=0.例2 某市今天的最高气温为7℃,最低气温为0℃.据天气预报,两天后有一股强冷空气将影响该市,届时将降温约5℃.问两天后该市的最高气温、最低气温约为多少摄氏度?解:气温下降5℃,记为-5℃.
7+(-5)=2(℃);
0+(-5)=-5(℃).
答:两天后该市的最高气温约为2℃,最低气温约为-5℃.( )+( )=-7
( )+( )=+3
要使 的和为正数或零或负数, ,应满足什么条件?⑴若 为正数,则 , 中至少有一个正数,且较大加数的绝对值较大.⑵若 为零,则 , 互为相反数.⑶若 为负数,则 , 中至少有一个负数,且较小加数的绝对值较大.拓展谢谢观看课件12张PPT。2.1 有理数的加法②教学目标:
1.通过“合作学习”活动,体验探索数学规律的思想和方法.
2.理解加法的运算律.
3.掌握多个有理数相加的顺序和方法,探索利用运算律简化运算过程.
4.灵活运用有理数的加法解决简单实际问题.
重难点:
●本节教学的重点是加法运算律和多个(多于2个)有理数相加的顺序与方法.
●例3的第(2)、(3)题,项较多,涉及分数(小数)运算,如何运用运算律需要较多的思考;例4要求列出两种不同意义的算式,这些都是本节教学的难点.合作学习
(1) 如图2-5,在下列各图案内任意填入一个有理数,要求相同的图案内填相同的数.

(2) 算出各算式的结果,比较左、右两边算式的结果是否相同.
(3) 其他同学的结果如何?你发现了什么?换几个不同的有理数试一试,结果如何?
在有理数运算中,加法的交换律和结合律仍成立:
加法交换律:两个数相加,交换加数的位置,和不变.
a+b=b+a.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
(a+b)+c=a+(b+c). (1) 15+(-13)+18  
(2)(-2.48)+4.33+(-7.52)+(-4.33)
(3)例3 计算=(15+18)+(-13)(加法结合律)
=33+(-13)
=20(1)15+(-13)+18=15+18+(-13)(加法交换律)=(-2.48)+4.33+(-7.52)+(-4.33)
= [(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]
=(-10)+0
=-10有相反数的先把相反数相加简称相反数结合法(2)(-2.48)+4.33+(-7.52)+(-4.33)(3)遇到分数,先把同分母的数相加,简称同分母结合法探究:
两个数相加的和,在什么条件下大于其中任何一个加数?在什么条件下等于其中任何一个加数?在什么条件下小于其中任何一个加数?当两个加数都是正数时,和大于任何一个加数;当两个加数都是 0 时,和等于任何一个加数;当两个加数都是负数时,和小于任何一个加数.拓展谢谢观看友情提醒:如遇flash打不开,可右击鼠标键,点击播放即可。