中小学教育资源及组卷应用平台
第五章特殊平行四边形单元测试A卷浙教版2024—2025学年八年级下册
总分:120分 时间:90分钟
姓名:________ 班级:_____________成绩:___________
一.单项选择题(每小题5分,满分40分)
题号 1 3 4 5 6 7 8
答案
1.已知在四边形ABCD中,AB∥CD,∠A=∠B,添加下列条件,不能保证四边形ABCD是矩形的是( )
A.AD∥BC B.AB=CD C.AC=BD D.∠A=∠C
2.在下列条件中,能够判定 ABCD为菱形的是( )
A.AC=BD B.AC=AD C.AC⊥BD D.AB⊥BC
3.下列说法中,不正确的是( )
A.两组对边分别平行的四边形是平行四边形
B.一组对边平行另外一组对边相等的四边形是平行四边形
C.对角线互相平分且垂直的四边形是菱形
D.有一组邻边相等的矩形是正方形
4.下列平行四边形中,根据图中所标出的数据,不能判定是菱形的是( )
A. B. C. D.
5.顺次连接下列图形的各边中点,所得图形为矩形的是( )
①矩形;②菱形;③对角线相等的四边形;④对角线互相垂直的四边形.
A.①③ B.②③ C.②④ D.③④
6.如图,在Rt△ABC中,AB=6,AC=8,∠A=90°,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的最小值是( )
A.3 B.4
C.4.8 D.5
7.如图,在菱形ABCD中,AC、BD交于O点,AC=24,BD=10,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N,则PM+PN的值为( )
A. B. C. D.
8.如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为( )
A.2 B.3 C. D.
二.填空题(每小题5分,满分20分)
9.如图,矩形ABCD中,点G是AD边上任意一点,连接GB,GC.点E,F分别是GB,GC的中点,连接EF.若AB:AD=2:3,S△GBC=12,则EF的值为 .
10.在菱形ABCD中,对角线AC=6,AB=5,则菱形ABCD的面积为 .
11.如图,在矩形ABCD中,点E在AD边上,点F在BC边上,且BF=DE,连接EF交对角线BD于点O,BD=5,CD=3,连接CE,若CE=CF,则EF长为 .
12.如图,在正方形ABCD中,点E、F分别是边BC、CD上的两个点,连接AE、AF分别与对角线BD交于点G、H,连接GF,若AG⊥GF,DHBG,下列说法正确的序号是 .
①AG=FG;
②BG2+DH2=GH2;
③∠BGE=60°;
④若CE=3,BE+DF值为3.
三.解答题(共6小题,每小题10分,每题须有必要的文字说明和解答过程)
13.如图,在平行四边形ABCD中,∠ACB=90°,过点D作DE⊥BC交BC的延长线于点E,连接AE交CD于点F.
(1)求证:四边形ACED是矩形;
(2)连接BF,若∠ABC=60°,CE=3,求BF的长.
14.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
15.如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.
(1)求证:四边形AECD是菱形;
(2)若AB平分∠EAC,OB=3,BE=5,求EF和AD的长.
16.如图,在 ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作 ECFG.
(1)证明 ECFG是菱形;
(2)若∠ABC=120°,连接BD、CG,求∠BDG的度数;
(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.
17.如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.
(1)求证:BE=DE;
(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.
①求证:矩形DEFG是正方形;
②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.
18.如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.
(1)求证:AO=BO;
(2)求证:∠HEB=∠HNB;
(3)过A作AP⊥ED于P点,连BP,则的值.
参考答案
一、选择题
1—8:CCBCCCDC
二、填空题
9.【解答】解:∵四边形ABCD是矩形,AB:AD=2:3,
∴设AB=CD=2a,AD=BC=3a,
∵S△GBC=12,
∴,
解得a=2,
∴AB=CD=4,AD=BC=6,
∵点E,F分别是GB,GC的中点,
∴,
故答案为:3.
10.【解答】解:如图,
由题意可得:AC⊥BD,,BO=OD,
∴,
∴BD=2BO=8,
∴,
故答案为:24.
11.【解答】解:作EH⊥BC于点H,
∵四边形ABCD为矩形,BD=5,CD=3,
∴AD=BC=5,∠CDE=∠BCD=90°,
∴四边形CDEH为矩形,,
∴EH=CD=3,ED=HC,
∵BF=DE,CE=CF,
设CE=CF=x,则BF=DE=4﹣x,
∵CD2+DE2=CE2,
∴32+(4﹣x)2=x2,
解得,
∴,
∴,
∴,
故答案为:.
12.【解答】解:答案为:①②③.
三、解答题
13.【解答】(1)证明:∵∠ACB=90°,
∴AC⊥BC,
∵DE⊥BC,
∴AC∥DE,
∵四边形ABCD是平行四边形,点E在BC的延长线上,
∴AD∥CE,
∴四边形ACED是平行四边形,
∵∠ACE=90°,
∴四边形ACED是矩形.
(2)解:∵四边形ACED是矩形,四边形ABCD是平行四边形,
∴AE=CD=AB,AF=EF,AD=CE=CB=3,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴BF⊥AE,AB=AE=BE=2CE=2×3=6,
∴∠AFB=90°,AFAE6=3,
∴BF3,
∴BF的长是3.
14.【解答】(1)证明:∵四边形ABCD是平行四边形,
∴BA∥CD,
∴∠BAE=∠FDE,
∵点E是AD的中点,
∴AE=DE,
在△BEA和△FED中,
,
∴△BEA≌△FED(ASA),
∴EF=EB,
又∵AE=DE,
∴四边形ABDF是平行四边形,
∵∠BDF=90°.
∴四边形ABDF是矩形;
(2)解:由(1)得四边形ABDF是矩形,
∴∠AFD=90°,AB=DF=3,AF=BD,
∴AF4,
∴S矩形ABDF=DF AF=3×4=12,BD=AF=4,
∵四边形ABCD是平行四边形,
∴CD=AB=3,
∴S△BCDBD CD4×3=6,
∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,
答:四边形ABCF的面积S为18.
15.【解答】(1)证明:∵AD=CD,BD⊥AC,
∴OA=OC,
∵OE=OD,
∴四边形AECD是平行四边形,
∵AC⊥BD,
∴平行四边形AECD是菱形;
(2)解:∵四边形AECD是菱形,
∴OE⊥OA,
∵CF⊥AE,AB平分∠EAC,
∴BF=OB,
∴Rt△AFB≌Rt△AOB(HL),
∴AF=OA=OC,
∵BF=OB=3,BE=5,
∴EF,
∴OE=OB+BE=3+5=8,
∵∠EFB=∠AOE=90°,∠FEB=∠AEO,
即,
∴AE=10,
∵AB平分∠EAC时,F应为AE的中点,且∠AEO=30°,AO与AE的比值应为1:2,
∴AD=AE=10.
16.【解答】解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△BEG≌△DCG(SAS),
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;
(3)如图2中,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=6,AD=8,
∴BD=10,
∴DMBD=5.
方法二:∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC=6,
过M作MH⊥CF于H,
则△MHF是等腰直角三角形,
∵△ADF是等腰直角三角形,
∴DF=AD=8,
∵CF=CE=2,
∴MH=FH=1,
∴DM5.
17.【解答】(1)证明:∵四边形ABCD为正方形,
∴∠BAE=∠DAE=45°,AB=AD,
在△ABE和△ADE中,
,
∴△ABE≌△ADE(SAS),
∴BE=DE;
(2)①证明:如图,作EM⊥BC于M,EN⊥CD于N,
得矩形EMCN,
∴∠MEN=90°,
∵点E是正方形ABCD对角线上的点,
∴EM=EN,
∵∠DEF=90°,
∴∠DEN=∠MEF=90°﹣∠FEN,
∵∠DNE=∠FME=90°,
在△DEN和△FEM中,
,
∴△DEN≌△FEM(ASA),
∴EF=DE,
∵四边形DEFG是矩形,
∴矩形DEFG是正方形;
②解:∵正方形DEFG和正方形ABCD,
∴DE=DG,AD=DC,
∵∠CDG+∠CDE=∠ADE+∠CDE=90°,
∴∠CDG=∠ADE,
在△ADE和△CDG中,
,
∴△ADE≌△CDG(SAS),
∴AE=CG,∠DAE=∠DCG=45°,
∵∠ACD=45°,
∴∠ACG=∠ACD+∠DCG=90°,
∴CE⊥CG,
∴CE+CG=CE+AE=ACAB=9.
∵CG=3,
∴CE=6,
连接EG,
∴EG3,
∴DEEG=3.
∴正方形DEFG的边长为3.
18.【解答】(1)证明:∵四边形ABCD是正方形,
∴AD=AB,AD∥BC,
∴∠DAB=∠ABE,∠ADO=∠BEO,
∵AB=BE,
∴AD=BE,
∴△ADO≌△BEO(ASA),
∴AO=BO;
(2)证明:延长BC至F,且使CF=BC,连接AF,如图1所示:
则BF=CE,
∵四边形ABCD是矩形,
∴AB=DC,AD∥BC,∠BAD=∠ABC=∠DCB=90°,
在△ABF和△DCE中,,
∴△ABF≌△DCE(SAS),
∴∠DEC=∠AFB,
∵EB=CF,BN=CN,
∴N为EF的中点,
∴MN为△AEF的中位线,
∴MN∥AF,
∴∠HNB=∠AFB=∠HEB;
(3)解:过点B作BQ⊥BP交DE于Q,如图2所示:
则∠PBQ=90°,
∵∠ABE=180°﹣∠ABC=90°,
∴∠EBQ=∠ABP,
∵AD∥BC,
∴∠ADP=∠BEQ,
∵AP⊥DE,∠BAD=90°,
由角的互余关系得:∠BAP=∠ADP,
∴∠BEQ=∠BAP,
在△BEQ和△BAP中,,
∴△BEQ≌△BAP(ASA),
∴PA=QE,QB=PB,
∴△PBQ是等腰直角三角形,
∴PQPB,
∴.
21世纪教育网(www.21cnjy.com)