中小学教育资源及组卷应用平台
3.5 一元一次不等式组
一、单选题
1.下列是在数轴上表示不等式组的解集,其中表示此不等式组无解的是( )
A. B.
C. D.
2.若是不等式组的一个解,则的值可以是( )
A.0 B.-2 C.3 D.-1
3.不等式组的解集,在数轴上表示正确的是( )
A. B.
C. D.
4.不等式 的解集在数轴上表示正确的是( )
A. B.
C. D.
5.不等式组的解集是( )
A. B. C. D.
二、填空题
6.不等式组的正整数解是 .
7.已知关于的不等式组恰好有三个整数解,则的取值范围是 .
8.不等式组的解集是 .
9.两个关于x的不等式的解集在数轴上的表示如图所示,则由这两个不等式组成的不等式组的解集为 .
10.已知关于的不等式组的整数解仅为1、2,则的最大值为 .
11.不等式组的解集为 .
三、计算题
12.求不等式组的整数解.
13.解不等式组:.
四、解答题
14.解不等式组.
15.为全面落实长沙市“三高四新”美好蓝图,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的2倍,甲队改造400米的道路比乙队改造同样长的道路少用5天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用5万元,乙队工作一天需付费用3万元,如需改造的道路全长1000米.改造总费用不超过65万元,至少安排甲队工作多少天?
五、综合题
16.每年5月份的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司要将一批新研发的物资运往A 市,计划租用A,B两种型号的货车,在每辆货车都满载的情况下,若租用4辆A型货车和6辆B 型货车可装载190箱物资;若租用5辆A型货车和10辆B型货车可装载275箱物资.
(1)A,B两种型号的货车每辆分别可装载多少箱物资?
(2)初步估算,运输的这批物资不超过725箱,若该公司计划租用A,B两种型号的货车共40辆,且B型货车的数量不超过A型货车数量的3倍,则该公司一次性将这批物资运往超市共有几种租车方案?请具体说明.
17.2017年党中央、国务院设立了雄安新区,它有着丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:
①每亩水面的年租金为500元,水面需按整数亩出租;
②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;
④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
(1)若租用水面 亩,则年租金共需 元;
(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);
(3)李大爷现在资金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖。已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?
18.某校为响应政府号召,准备购买甲,乙两种型号的分类垃圾桶.购买时发现,甲种型号的单价比乙种型号的单价少元,用元购买甲种垃圾桶的个数与用元购买乙种垃圾桶的个数相同.
(1)求甲、乙两种型号垃圾桶的单价各是多少元?
(2)若某校需要购买分类垃圾桶6个,总费用不超过元,求所有不同的购买方式.
六、实践探究题
19.感知:解不等式,根据两数相除,同号得正,异号得负,得不等式组①或不等式组②解不等式组①,得;解不等式组②,得,所以原不等式的解集为或.
(1)探究:解不等式.
(2)应用:不等式的解集是______.
答案解析部分
1.【答案】A
【知识点】解一元一次不等式组;在数轴上表示不等式的解集
2.【答案】A
【知识点】解一元一次不等式组;一元一次不等式组的特殊解
3.【答案】B
【知识点】解一元一次不等式组;在数轴上表示不等式的解集
4.【答案】A
【知识点】解一元一次不等式组
5.【答案】C
【知识点】解一元一次不等式组
6.【答案】1,2,3
【知识点】一元一次不等式组的特殊解
7.【答案】
【知识点】解一元一次不等式组
8.【答案】
【知识点】解一元一次不等式组
9.【答案】
【知识点】解一元一次不等式组
10.【答案】11
【知识点】解一元一次不等式组
11.【答案】1<x<8
【知识点】解一元一次不等式组
12.【答案】
【知识点】一元一次不等式组的特殊解
13.【答案】
【知识点】解一元一次不等式组
14.【答案】1<x≤3.
【知识点】解一元一次不等式组
15.【答案】(1)解:设乙工程队每天能改造道路的长度为米,则甲工程队每天能改造道路的长度为米.
由题意得,
解得,,
经检验,是原分式方程的解,
,
答:甲、乙两工程队每天能改造道路的长度分别是80米,40米.
(2)解:设安排甲队工作天,则安排乙队工作天.
由题意得
,
至少安排甲队工作10天
答:至少安排甲队工作10天.
【知识点】分式方程的实际应用;一元一次不等式组的应用
16.【答案】(1)A型货车每辆可装载25箱物资,型货车每辆可装载15箱物资
(2)租车方案共有3种,具体如下:①型货车10辆,型货车30辆;②型货车11辆,型货车29辆;③型货车12辆,型货车28辆
【知识点】一元一次不等式组的应用;二元一次方程组的实际应用-方案选择题问题
17.【答案】(1)
(2)解:每亩收益=4×1400+20×160=8800
每亩成本=4×(75+525)+20×(15+85)+500=4900
利润=8800-4900=3900
(3)解:设租n亩,则贷款(4900n-25000)元,由题意得
又∵n为正整数
∴n="10"
∴贷款4900×10-25000=24000(元).
【知识点】一元一次不等式组的应用
18.【答案】(1)甲种垃圾桶的单价为元,乙种垃圾桶的单价为元
(2)共有3种购买方式:①购买甲种型号的垃圾桶4个,乙种型号的垃圾桶2个;②购买甲种型号的垃圾桶5个,乙种型号的垃圾桶1个;③购买甲种型号的垃圾桶6个,乙种型号的垃圾桶0个.
【知识点】分式方程的实际应用;一元一次不等式组的应用
19.【答案】(1)
(2)
【知识点】解一元一次不等式组
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)