中小学教育资源及组卷应用平台
第2章 简单事件的概率(培优)
一、单选题
1.如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材料损耗速度与流经其表面水的数量成正比,则更换最慢一个三角形材料使用的时间约为更换一个三角形材料使用时间的8倍,其中正确的判断有( )
A.1个 B.2个 C.3个 D.4个
2.下列说法正确的是 ( )
A.甲、乙两人 10 次测试成绩的方差分别是 , 则乙的成频更稳定
B.某奖券的中奖率为 , 买 100 张奖券,一定会中奖 1 次
C.要了解神舟飞船零件质量情况, 适合采用抽样调查
D. 是不等式 的解, 这是一个必然事件
3.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是( )
A. B. C. D.
4.班长邀请四名同学参加圆桌会议.如图,班长坐在⑤号座位,四名同学随机坐在①、②、③、④号座位,则两名同学座位相邻的概率是( )
A. B. C. D.
5.某商场举办促销活动,负责人在一个不透明的袋子里装着个大小、质量相同的小球,其中个为红色、个为黄色、个为绿色,若要获奖需要一次性摸出个红球和个黄球,那么获奖的概率为( )
A. B. C. D.
6.甲乙两人轮流在黑板上写下不超过 的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略.
A.10 B.9 C.8 D.6
二、填空题
7.在平面直角坐标系中,作OOAB,其中三个顶点分别是O(0,0),B(1,1),A( , ),其中点A,O,B不在同一直线上且-2≤ ≤2,-2≤ ≤2, , 均为整数,则所作OOAB为直角三角形的概率是 .
8.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .
9.取5张看上去无差别的卡片,分别在正面写上数字:,1,,2,,3,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为,则数字使分式方程无解的概率为 .
10.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为 .
11.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率是 .
12.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余均相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程有正整数解的概率为
三、解答题
13.某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会.抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1,2,3,…,100共100个数字,抽到末位数是5的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99的可获100元购物券.某顾客购物用了130元,他获得购物券的概率是多少 他获得20元、100元、200元购物券的概率分别是多少
14.设函数y=ax2+bx+1,其中a可取的值是-1,0,1,b可取的值是-1,1,2.
(1)当a,b分别取何值时,所得函数有最小值?直接写出满足条件的函数,以及相应的最小值.
(2)如果a在-1,0,1三个数中随机抽取一个,b在-1,1,2中随机抽取一个,共可得到多少个不同的函数表达式?从这些函数中任取一个,求取到当x>0时,y随x的增大而减小的函数的概率.
15.抢30游戏:抢30游戏的规则是:第一个先说“1”或“1,2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每人每次说一个或两个数,但不可以不说或说三个数,谁先抢说到30,谁就获胜!该游戏公平吗 说说你的理由.
答案解析部分
1.【答案】C
【知识点】可能性的大小
2.【答案】D
【知识点】解一元一次不等式;全面调查与抽样调查;事件的分类;概率的意义;方差
3.【答案】B
【知识点】概率公式
4.【答案】C
【知识点】概率公式;复合事件概率的计算
5.【答案】D
【知识点】用列表法或树状图法求概率;简单事件概率的计算
6.【答案】D
【知识点】游戏公平性
7.【答案】
【知识点】用列表法或树状图法求概率
8.【答案】
【知识点】几何概率
9.【答案】
【知识点】解分式方程;分式方程的增根;简单事件概率的计算
10.【答案】
【知识点】几何概率;概率公式
11.【答案】
【知识点】复合事件概率的计算
12.【答案】
【知识点】解分式方程;概率公式
13.【答案】解:顾客的消费额在100元到200元之间,因此可以获得一次抽奖的机会.在抽奖箱内,写有66,88,99的牌子各有1个,末位数字是5的牌子有10个.因此P(获得购物券)= ,P(获得20元购物券)= ,P(获得100元购物券)= ,P(获得200元购物券)=
【知识点】概率的简单应用
14.【答案】(1)解:y=x2-x+1,最小值为 ;y=x2+x +1,最小值为;y=x2+2x+1,最小值为0.
(2)解:根据题意画出树状图如下:
可得到9个不同的函数解析式,
∵当x>0时y随x增大而减小的函数是y=-x2-x+1,y=-x+1,
∴概率为.
【知识点】二次函数的最值;用列表法或树状图法求概率;概率公式;二次函数y=ax²+bx+c的性质
15.【答案】解:不公平。只要能先抢说3的倍数就能先抢到30,因此选择第二个报数就能获胜,故不公平。
【知识点】游戏公平性
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)